当前位置:
X-MOL 学术
›
ACS Appl. Energy Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Robust Electron Transport Layers via In Situ Cross-Linking of Perylene Diimide and Fullerene for Perovskite Solar Cells
ACS Applied Energy Materials ( IF 5.4 ) Pub Date : 2019-08-16 00:00:00 , DOI: 10.1021/acsaem.9b01154 Jun-Ho Yum 1 , Soo-Jin Moon 2 , Liang Yao 1 , Marina Caretti 1 , Sylvain Nicolay 2 , Do-Hyung Kim 3 , Kevin Sivula 1
ACS Applied Energy Materials ( IF 5.4 ) Pub Date : 2019-08-16 00:00:00 , DOI: 10.1021/acsaem.9b01154 Jun-Ho Yum 1 , Soo-Jin Moon 2 , Liang Yao 1 , Marina Caretti 1 , Sylvain Nicolay 2 , Do-Hyung Kim 3 , Kevin Sivula 1
Affiliation
While employing charge transport layers (CTLs) in optoelectronic devices including hybrid perovskite solar cells is essential for high performance, using solution-processed organic semiconductor-based CTLs poses challenges for device fabrication. Cross-linking the organic semiconductor is a viable approach, but cross-linked CTLs require additional development for practical application. Here a facile in situ strategy to prepare a cross-linked electron transport layer (ETL) is demonstrated by employing a semiconducting cross-linker composed of perylenediimide-diazide, together with the fullerene (C60) derivative coded as PCBM. Varying the PCBM ratio the cross-linking conditions affords a tunable ETL that exhibits solvent tolerance, suitable electron mobility (>10–4 cm2 V–1 s–1), and hydrophobicity at cross-linking temperatures as low as 120 °C. In both the n–i–p structure and the p–i–n perovskite solar cells employing our ETL, stable power generation and hysteresis-free performance are achieved. Optimized p–i–n devices with our cross-linked ETL gave power conversion efficiency of over 12% (active area of 1.07 cm2). These results suggest that robust n-type semiconducting films obtained with our cross-linking method are promising as ETLs in practical optoelectronic applications.
中文翻译:
钙钛矿型太阳能电池通过In二酰亚胺和富勒烯的原位交联得到的稳健的电子传输层
尽管在包括混合钙钛矿太阳能电池的光电子器件中采用电荷传输层(CTL)对于高性能至关重要,但使用溶液处理的基于有机半导体的CTL对器件制造提出了挑战。交联有机半导体是一种可行的方法,但是交联的CTL需要进一步开发才能用于实际应用。在这里,通过使用由per二酰亚胺-二叠氮化物和编码为PCBM的富勒烯(C 60)衍生物组成的半导体交联剂,证明了制备交联电子传输层(ETL)的简便方法。改变PCBM的比例,交联条件提供了可调节的ETL,该ETL具有耐溶剂性,合适的电子迁移率(> 10 –4 cm 2V –1 s –1),在低至120°C的交联温度下具有疏水性。在采用我们的ETL的n–i–p结构和p–i–n钙钛矿型太阳能电池中,均可实现稳定的发电和无滞后性能。使用我们的交联ETL优化的p–i–n器件可实现超过12%的功率转换效率(有效面积为1.07 cm 2)。这些结果表明,用我们的交联方法获得的坚固的n型半导体膜有望在实际的光电应用中用作ETL。
更新日期:2019-08-16
中文翻译:
钙钛矿型太阳能电池通过In二酰亚胺和富勒烯的原位交联得到的稳健的电子传输层
尽管在包括混合钙钛矿太阳能电池的光电子器件中采用电荷传输层(CTL)对于高性能至关重要,但使用溶液处理的基于有机半导体的CTL对器件制造提出了挑战。交联有机半导体是一种可行的方法,但是交联的CTL需要进一步开发才能用于实际应用。在这里,通过使用由per二酰亚胺-二叠氮化物和编码为PCBM的富勒烯(C 60)衍生物组成的半导体交联剂,证明了制备交联电子传输层(ETL)的简便方法。改变PCBM的比例,交联条件提供了可调节的ETL,该ETL具有耐溶剂性,合适的电子迁移率(> 10 –4 cm 2V –1 s –1),在低至120°C的交联温度下具有疏水性。在采用我们的ETL的n–i–p结构和p–i–n钙钛矿型太阳能电池中,均可实现稳定的发电和无滞后性能。使用我们的交联ETL优化的p–i–n器件可实现超过12%的功率转换效率(有效面积为1.07 cm 2)。这些结果表明,用我们的交联方法获得的坚固的n型半导体膜有望在实际的光电应用中用作ETL。