当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Ultrafast Rechargeable Zinc Battery Based on High-Voltage Graphite Cathode and Stable Nonaqueous Electrolyte
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2019-08-16 00:00:00 , DOI: 10.1021/acsami.9b10399 Ning Zhang 1, 2 , Yang Dong 1 , Yuanyuan Wang 1 , Yixuan Wang 1 , Jiajun Li 1 , Jianzhong Xu 1 , Yongchang Liu 2, 3 , Lifang Jiao 2 , Fangyi Cheng 2
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2019-08-16 00:00:00 , DOI: 10.1021/acsami.9b10399 Ning Zhang 1, 2 , Yang Dong 1 , Yuanyuan Wang 1 , Yixuan Wang 1 , Jiajun Li 1 , Jianzhong Xu 1 , Yongchang Liu 2, 3 , Lifang Jiao 2 , Fangyi Cheng 2
Affiliation
Zinc-based battery chemistries have lately drawn great attention for grid-scale energy storage due to their material abundance and high safety. However, the low Coulombic efficiency (CE) and dendrite growth of zinc (Zn) anodes and the limited working voltage of current oxide cathodes are the major barriers hindering the development of rechargeable Zn-based batteries (RZBs). Here, we report an ultrafast and high-voltage Zn battery in a new cell configuration employing a graphite cathode, a Zn anode, and nonaqueous 1 M zinc bis(trifluoromethylsulfonyl)imide (Zn(TFSI)2) in acetonitrile (AN) electrolyte. This RZB operates through the (de)intercalation of TFSI– anions into the graphite and the electrochemical Zn2+ plating/stripping at the anode. The optimized Zn(TFSI)2/AN electrolyte features high reductive/oxidative stability, good ionic conductivity (∼28 mS cm–1), and low viscosity (∼0.4 mPa·s), enabling the unprecedented cycling stability (over 1000 h) of the Zn anode with a dendrite-free morphology, the ultrafast Zn plating/stripping with a high CE (>99%), and the good compatibility with the graphite cathode. Consequently, this RZB exhibits a high average output voltage (2.2 V), a high energy/power density (86.5 Wh kg–1 at 4400 W kg–1), and a long cycle life (97.3% capacity retention after 1000 cycles). The present work offers new insights and opportunities to the Zn-based electrochemistry.
中文翻译:
基于高压石墨阴极和稳定非水电解质的超快充电锌电池
锌基电池化学材料因其材料丰富且安全性高,最近在网格规模的储能领域引起了极大的关注。但是,锌阳极的低库仑效率(CE)和枝晶生长以及电流氧化物阴极的有限工作电压是阻碍可再充电锌基电池(RZBs)发展的主要障碍。在这里,我们报告了一种采用石墨阴极,锌阳极和乙腈(AN)电解质中的非水1 M双(三氟甲基磺酰基)亚胺锌(Zn(TFSI)2)的新型电池配置中的超快高压锌电池。该RZB通过将TFSI –阴离子(去嵌入)到石墨和电化学Zn 2+中进行操作阳极电镀/剥离。经过优化的Zn(TFSI)2 / AN电解质具有高还原/氧化稳定性,良好的离子电导率(〜28 mS cm –1)和低粘度(〜0.4 mPa·s),从而实现了前所未有的循环稳定性(超过1000 h)具有无枝晶形态的Zn阳极,具有高CE(> 99%)的超快Zn镀层/剥离和与石墨阴极的良好相容性。因此,这RZB表现出高的平均输出电压(2.2 V),高的能量/功率密度(86.5瓦千克-1在4400公斤w ^ -1),以及长的循环寿命(97.3%容量保持1000次循环后)。目前的工作为基于锌的电化学提供了新的见识和机会。
更新日期:2019-08-16
中文翻译:
基于高压石墨阴极和稳定非水电解质的超快充电锌电池
锌基电池化学材料因其材料丰富且安全性高,最近在网格规模的储能领域引起了极大的关注。但是,锌阳极的低库仑效率(CE)和枝晶生长以及电流氧化物阴极的有限工作电压是阻碍可再充电锌基电池(RZBs)发展的主要障碍。在这里,我们报告了一种采用石墨阴极,锌阳极和乙腈(AN)电解质中的非水1 M双(三氟甲基磺酰基)亚胺锌(Zn(TFSI)2)的新型电池配置中的超快高压锌电池。该RZB通过将TFSI –阴离子(去嵌入)到石墨和电化学Zn 2+中进行操作阳极电镀/剥离。经过优化的Zn(TFSI)2 / AN电解质具有高还原/氧化稳定性,良好的离子电导率(〜28 mS cm –1)和低粘度(〜0.4 mPa·s),从而实现了前所未有的循环稳定性(超过1000 h)具有无枝晶形态的Zn阳极,具有高CE(> 99%)的超快Zn镀层/剥离和与石墨阴极的良好相容性。因此,这RZB表现出高的平均输出电压(2.2 V),高的能量/功率密度(86.5瓦千克-1在4400公斤w ^ -1),以及长的循环寿命(97.3%容量保持1000次循环后)。目前的工作为基于锌的电化学提供了新的见识和机会。