当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Toward Highly Reproducible, Efficient, and Stable Perovskite Solar Cells via Interface Engineering with CoO Nanoplates
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2019-08-12 00:00:00 , DOI: 10.1021/acsami.9b11039 Yanfei Dou 1 , Deng Wang 1 , Guodong Li 1 , Yinsheng Liao 1 , Weihai Sun 1 , Jihuai Wu 1 , Zhang Lan 1
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2019-08-12 00:00:00 , DOI: 10.1021/acsami.9b11039 Yanfei Dou 1 , Deng Wang 1 , Guodong Li 1 , Yinsheng Liao 1 , Weihai Sun 1 , Jihuai Wu 1 , Zhang Lan 1
Affiliation
It is well-known that solution-processed polycrystalline perovskite films show a high density of parasitic traps and the defects mainly exist at grain boundaries and surfaces of polycrystal perovskite films, which would limit potential device performance by triggering the undesired recombination and impair device long-term stability by accelerating the degradation of perovskite films. In this regard, defect passivation is highly desirable for achieving efficient and stable perovskite solar cells (PSCs). Here, we report the fabrication of highly reproducible, efficient, and stable PSCs via interface engineering with CoO nanoplates. When a suitable concentration of CoO nanoplates solution is spin-coated on perovskite film, a discontinuous CoO nanoplates modified layer is obtained, which is advantageous to achieving highly photovoltaic performance of the device because the uncovered perovskite crystalline grains can guarantee the unobstructed transport of holes from perovskite layers to hole transport layers. Furthermore, the hydrophobic oleylamine ligands capped CoO nanoplates are well filled in the boundaries of perovskite crystalline grains to effectively passivate the trap states, suppress dark recombination, and enhance moisture-resistance. These benefits are propitious to achieving a 20.72% champion efficiency and a 20.20% steady-state efficiency of the devices with good reproducibility and stability.
中文翻译:
通过与CoO纳米板的界面工程实现高度可再生,高效且稳定的钙钛矿太阳能电池
众所周知,固溶处理的多晶钙钛矿膜显示出高密度的寄生陷阱,并且缺陷主要存在于多晶钙钛矿膜的晶界和表面,这会通过触发不良的重组而限制潜在的器件性能,并损害器件的长寿命。通过加速钙钛矿薄膜的降解来提高长期稳定性。在这方面,非常需要缺陷钝化以实现有效和稳定的钙钛矿太阳能电池(PSC)。在这里,我们报告了通过与CoO纳米板的界面工程来制造高度可复制,高效且稳定的PSC。当将合适浓度的CoO纳米板溶液旋涂在钙钛矿薄膜上时,会获得不连续的CoO纳米板改性层,由于未覆盖的钙钛矿晶粒可以确保空穴从钙钛矿层到空穴传输层的无阻碍传输,因此这对于实现装置的高光伏性能是有利的。此外,疏水的油胺基配位体包覆的CoO纳米板被很好地填充在钙钛矿晶粒的边界中,从而有效地钝化了陷阱态,抑制了暗复合,并增强了耐湿性。这些优点有利于实现具有良好可重复性和稳定性的器件的20.72%冠军效率和20.20%稳态效率。疏水性油胺基配位体包覆的CoO纳米板被很好地填充在钙钛矿晶粒的边界中,从而有效地钝化了陷阱态,抑制了暗复合,并增强了耐湿性。这些优点有利于实现具有良好可重复性和稳定性的器件的20.72%冠军效率和20.20%稳态效率。疏水性油胺基配位体包覆的CoO纳米板被很好地填充在钙钛矿晶粒的边界中,从而有效地钝化了陷阱态,抑制了暗复合,并增强了耐湿性。这些优点有利于实现具有良好可重复性和稳定性的器件的20.72%冠军效率和20.20%稳态效率。
更新日期:2019-08-12
中文翻译:
通过与CoO纳米板的界面工程实现高度可再生,高效且稳定的钙钛矿太阳能电池
众所周知,固溶处理的多晶钙钛矿膜显示出高密度的寄生陷阱,并且缺陷主要存在于多晶钙钛矿膜的晶界和表面,这会通过触发不良的重组而限制潜在的器件性能,并损害器件的长寿命。通过加速钙钛矿薄膜的降解来提高长期稳定性。在这方面,非常需要缺陷钝化以实现有效和稳定的钙钛矿太阳能电池(PSC)。在这里,我们报告了通过与CoO纳米板的界面工程来制造高度可复制,高效且稳定的PSC。当将合适浓度的CoO纳米板溶液旋涂在钙钛矿薄膜上时,会获得不连续的CoO纳米板改性层,由于未覆盖的钙钛矿晶粒可以确保空穴从钙钛矿层到空穴传输层的无阻碍传输,因此这对于实现装置的高光伏性能是有利的。此外,疏水的油胺基配位体包覆的CoO纳米板被很好地填充在钙钛矿晶粒的边界中,从而有效地钝化了陷阱态,抑制了暗复合,并增强了耐湿性。这些优点有利于实现具有良好可重复性和稳定性的器件的20.72%冠军效率和20.20%稳态效率。疏水性油胺基配位体包覆的CoO纳米板被很好地填充在钙钛矿晶粒的边界中,从而有效地钝化了陷阱态,抑制了暗复合,并增强了耐湿性。这些优点有利于实现具有良好可重复性和稳定性的器件的20.72%冠军效率和20.20%稳态效率。疏水性油胺基配位体包覆的CoO纳米板被很好地填充在钙钛矿晶粒的边界中,从而有效地钝化了陷阱态,抑制了暗复合,并增强了耐湿性。这些优点有利于实现具有良好可重复性和稳定性的器件的20.72%冠军效率和20.20%稳态效率。