Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Transitional Metal Catalytic Pyrite Cathode Enables Ultrastable Four-Electron-Based All-Solid-State Lithium Batteries
ACS Nano ( IF 15.8 ) Pub Date : 2019-08-09 00:00:00 , DOI: 10.1021/acsnano.9b04538
Hongli Wan 1, 2 , Gaozhan Liu 1, 2 , Yanle Li 1, 3 , Wei Weng 1, 2 , Jean Pierre Mwizerwa 1, 2 , Ziqi Tian 1, 3 , Liang Chen 1, 2 , Xiayin Yao 1, 2
ACS Nano ( IF 15.8 ) Pub Date : 2019-08-09 00:00:00 , DOI: 10.1021/acsnano.9b04538
Hongli Wan 1, 2 , Gaozhan Liu 1, 2 , Yanle Li 1, 3 , Wei Weng 1, 2 , Jean Pierre Mwizerwa 1, 2 , Ziqi Tian 1, 3 , Liang Chen 1, 2 , Xiayin Yao 1, 2
Affiliation
![]() |
All-solid-state batteries can enable reversible four lithium ion storage for pyrite (FeS2) at a cutoff voltage of 1.0–3.0 V. However, strain/stress concentration generating electrode pulverization and sluggish electrochemical reaction of lithium sulfide and sulfur will affect the long cycling stability of the battery. Through experiments and density functional theory (DFT) calculations, it is proved that nanostructure engineering and electronic conduction improvement with introduction of catalytic cobalt can effectively improve the electrochemical activity of FeS2. The optimized loose structured Co0.1Fe0.9S2 based all-solid-state lithium batteries show reversible capacities of 860.5, 797.7, 685.8, and 561.8 mAh g–1 after five cycles at 100, 200, 500, and 1000 mA g–1, respectively, and a stable capacity of 543.5 mAh g–1 can be maintained after cycling at a current density of 500 mA g–1 for 100 cycles. Ex situ TEM and Raman results reveal that, after the first cycle, the reversible reaction 2Li2S + Fe ↔ FeSy + (2 – y)S + 4Li+ + 4e– proceeds from the following cycles onward, while nanocrystalline mackinawite FeS, Fe(III)-containing mackinawite FeS, and Fe3S4 are generated after the first discharge–charge process. This work provides a facile method for improving the electrochemical performance for multi-electron reaction mechanism based all-solid-state lithium batteries.
中文翻译:
过渡金属催化黄铁矿阴极可实现超稳定的基于四电子的全固态锂电池
全固态电池可以在1.0-3.0 V的截止电压下实现黄铁矿(FeS 2)的可逆四个锂离子存储。但是,会产生应力/应力集中的电极粉化以及硫化锂和硫的缓慢电化学反应会影响电池循环寿命长。通过实验和密度泛函理论(DFT)的计算,证明了纳米结构工程和引入催化钴的电子传导改进可以有效地提高FeS 2的电化学活性。优化的疏松结构Co 0.1 Fe 0.9 S 2的全固态锂电池分别在100、200、500和1000 mA g –1的五个循环后显示可逆容量分别为860.5、797.7、685.8和561.8 mAh g –1,稳定容量为543.5 mAh克-1可以在500毫安g的电流密度循环后维持-1进行100个循环。易地TEM和拉曼结果表明,第一个周期之后,可逆反应2LI 2 S +的Fe↔的FeS Ý +(2 - Ý)S + 4Li + + 4 ê -从向前下面的循环进行,而纳米晶体mackinawite的FeS ,含Fe(III)的马基钠铁矿FeS和Fe 3S 4是在第一次充放电过程之后产生的。这项工作为提高基于多电子反应机理的全固态锂电池的电化学性能提供了一种简便的方法。
更新日期:2019-08-09
中文翻译:

过渡金属催化黄铁矿阴极可实现超稳定的基于四电子的全固态锂电池
全固态电池可以在1.0-3.0 V的截止电压下实现黄铁矿(FeS 2)的可逆四个锂离子存储。但是,会产生应力/应力集中的电极粉化以及硫化锂和硫的缓慢电化学反应会影响电池循环寿命长。通过实验和密度泛函理论(DFT)的计算,证明了纳米结构工程和引入催化钴的电子传导改进可以有效地提高FeS 2的电化学活性。优化的疏松结构Co 0.1 Fe 0.9 S 2的全固态锂电池分别在100、200、500和1000 mA g –1的五个循环后显示可逆容量分别为860.5、797.7、685.8和561.8 mAh g –1,稳定容量为543.5 mAh克-1可以在500毫安g的电流密度循环后维持-1进行100个循环。易地TEM和拉曼结果表明,第一个周期之后,可逆反应2LI 2 S +的Fe↔的FeS Ý +(2 - Ý)S + 4Li + + 4 ê -从向前下面的循环进行,而纳米晶体mackinawite的FeS ,含Fe(III)的马基钠铁矿FeS和Fe 3S 4是在第一次充放电过程之后产生的。这项工作为提高基于多电子反应机理的全固态锂电池的电化学性能提供了一种简便的方法。