Journal of Power Sources ( IF 8.1 ) Pub Date : 2019-08-09 , DOI: 10.1016/j.jpowsour.2019.226991 Francisco J.A. Loureiro , Narendar Nasani , G. Srinivas Reddy , N.R. Munirathnam , Duncan P. Fagg
Ceramic proton conductors can reduce the operating temperature of solid oxide fuel cells (SOFCs) to the intermediate temperature range, 400-600 °C, due to their higher ionic conductivity in comparison to oxide-ion conductors under these conditions. Nonetheless, the most promising proton conducting materials, typically yttrium-doped barium cerates and zirconates with nominal compositions: BaCe1-xYxO3-δ (BCY), BaZr1-xYxO3-δ (BZY) and Ba(Ce,Zr)1-yYyO3-δ (BCZY) exhibit major challenges with respect to the production of dense electrolyte membranes. To improve the processing of these materials, liquid phase sintering (LPS) induced by the addition of transition and alkali metal oxides as sintering additives, is proposed as an effective way to promote densification, where the benefits of LPS may be further extended when this method is used in combination with solid-state reactive sintering (SSRS) to reduce the fabrication time and cost. Nonetheless, recent literature highlights that the addition of these sintering additives can have highly negative secondary impacts on bulk transport properties and overall fuel cell performance. This review summarises the recent developments and the innovative methods employed to overcome the processing difficulties in these materials, including diverse potential sintering methods, the effect of different sintering additives and their impact on densification, ionic transport and electrochemical properties.
中文翻译:
质子陶瓷燃料电池用质子传导BaCeO 3 -BaZrO 3钙钛矿氧化物材料的烧结技术综述。
陶瓷质子导体可将固体氧化物燃料电池(SOFC)的工作温度降低至400-600°C的中间温度范围,这是因为与这些条件下的氧化物离子导体相比,它们的离子电导率更高。尽管如此,最有前途的质子传导材料,通常是掺钇的铈酸钡和锆酸钡,其标称组成为:BaCe 1-x Y x O3 -δ(BCY),BaZr 1-x Y x O3 -δ(BZY)和Ba (Ce,Zr)1-y Y y O3 -δ(BCZY)在致密电解质膜的生产方面表现出重大挑战。为了改善这些材料的加工性,提出了通过添加过渡金属和碱金属氧化物作为烧结添加剂而引发的液相烧结(LPS)作为促进致密化的有效方法,当使用这种方法时,LPS的优势可能会进一步扩展。与固态反应烧结(SSRS)结合使用可减少制造时间和成本。但是,最近的文献强调指出,添加这些烧结添加剂可能会对整体运输性能和整体燃料电池性能产生极大的负面影响。这篇综述总结了克服这些材料加工困难的最新进展和创新方法,