当前位置:
X-MOL 学术
›
J. Am. Chem. Soc.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Colloidal Atomic Layer Deposition with Stationary Reactant Phases Enables Precise Synthesis of “Digital” II-VI Nano-heterostructures with Exquisite Control of Confinement and Strain
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2019-08-03 , DOI: 10.1021/jacs.9b04866 Abhijit Hazarika 1 , Igor Fedin 1 , Liang Hong 2 , Jinglong Guo 2 , Vishwas Srivastava 1 , Wooje Cho 1 , Igor Coropceanu 1 , Joshua Portner 1 , Benjamin T. Diroll 3 , John P. Philbin 4 , Eran Rabani 4, 5, 6 , Robert Klie 2 , Dmitri V. Talapin 1, 3
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2019-08-03 , DOI: 10.1021/jacs.9b04866 Abhijit Hazarika 1 , Igor Fedin 1 , Liang Hong 2 , Jinglong Guo 2 , Vishwas Srivastava 1 , Wooje Cho 1 , Igor Coropceanu 1 , Joshua Portner 1 , Benjamin T. Diroll 3 , John P. Philbin 4 , Eran Rabani 4, 5, 6 , Robert Klie 2 , Dmitri V. Talapin 1, 3
Affiliation
In contrast to molecular systems, which are defined with atomic precision, nanomaterials generally show some heterogeneity in size, shape, and composition. The sample inhomogeneity translates into a distribution of energy levels, band gaps, work functions, and other characteristics, which detrimentally affect practically every property of functional nanomaterials. We discuss a novel synthetic strategy, colloidal Atomic Layer Deposition (c-ALD) with stationary reactant phases, which largely circumvent the limitations of traditional colloidal syntheses of nano-heterostructures with atomic precision. This approach allows for significant reduction of inhomogeneity in nanomaterials in complex nanostructures without compromising their structural perfection and enables the synthesis of epitaxial nano-heterostructures of unprecedented complexity. The improved synthetic control ultimately enables bandgap and strain engineering in colloidal nanomaterials with close-to-atomic accuracy. To demonstrate the power of new c-ALD method, we synthesize a library of complex II-VI semiconductor nanoplatelet heterostructures. By combining spectroscopic and computational studies, we elucidate the subtle interplay between quantum confinement and strain effects on the optical properties of semiconductor nanostructures.
中文翻译:
具有固定反应物相的胶体原子层沉积能够精确合成“数字”II-VI 纳米异质结构,并精确控制约束和应变
与以原子精度定义的分子系统相比,纳米材料通常在尺寸、形状和组成上表现出一些异质性。样品的不均匀性转化为能级、带隙、功函数和其他特性的分布,这些特性实际上对功能性纳米材料的每一个特性都有不利影响。我们讨论了一种新的合成策略,即具有固定反应物相的胶体原子层沉积 (c-ALD),它在很大程度上规避了具有原子精度的纳米异质结构的传统胶体合成的局限性。这种方法可以显着减少复杂纳米结构中纳米材料的不均匀性,而不会影响其结构的完美性,并且能够合成前所未有的复杂的外延纳米异质结构。改进的合成控制最终使胶体纳米材料的带隙和应变工程能够以接近原子的精度实现。为了证明新的 c-ALD 方法的威力,我们合成了一个复杂的 II-VI 半导体纳米片异质结构库。通过结合光谱和计算研究,我们阐明了量子限制和应变效应之间对半导体纳米结构光学特性的微妙相互作用。
更新日期:2019-08-03
中文翻译:
具有固定反应物相的胶体原子层沉积能够精确合成“数字”II-VI 纳米异质结构,并精确控制约束和应变
与以原子精度定义的分子系统相比,纳米材料通常在尺寸、形状和组成上表现出一些异质性。样品的不均匀性转化为能级、带隙、功函数和其他特性的分布,这些特性实际上对功能性纳米材料的每一个特性都有不利影响。我们讨论了一种新的合成策略,即具有固定反应物相的胶体原子层沉积 (c-ALD),它在很大程度上规避了具有原子精度的纳米异质结构的传统胶体合成的局限性。这种方法可以显着减少复杂纳米结构中纳米材料的不均匀性,而不会影响其结构的完美性,并且能够合成前所未有的复杂的外延纳米异质结构。改进的合成控制最终使胶体纳米材料的带隙和应变工程能够以接近原子的精度实现。为了证明新的 c-ALD 方法的威力,我们合成了一个复杂的 II-VI 半导体纳米片异质结构库。通过结合光谱和计算研究,我们阐明了量子限制和应变效应之间对半导体纳米结构光学特性的微妙相互作用。