当前位置:
X-MOL 学术
›
J. Appl. Polym. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Porous carbon nanosheet with high surface area derived from waste poly(ethylene terephthalate) for supercapacitor applications
Journal of Applied Polymer Science ( IF 2.7 ) Pub Date : 2019-08-02 , DOI: 10.1002/app.48338 Yanliang Wen 1, 2 , Krzysztof Kierzek 3 , Jiakang Min 4 , Xuecheng Chen 1, 2 , Jiang Gong 5 , Ran Niu 6 , Xin Wen 1 , Jalal Azadmanjiri 7 , Ewa Mijowska 1 , Tao Tang 2
Journal of Applied Polymer Science ( IF 2.7 ) Pub Date : 2019-08-02 , DOI: 10.1002/app.48338 Yanliang Wen 1, 2 , Krzysztof Kierzek 3 , Jiakang Min 4 , Xuecheng Chen 1, 2 , Jiang Gong 5 , Ran Niu 6 , Xin Wen 1 , Jalal Azadmanjiri 7 , Ewa Mijowska 1 , Tao Tang 2
Affiliation
Converting waste plastics into valuable carbon materials has obtained increasing attention. In addition, carbon materials have shown to be the ideal electrode materials for double‐layer supercapacitors owing to their large specific surface area, high electrical conductivity, and stable physicochemical properties. Herein, an easily operated approach is established to efficiently convert waste poly(ethylene terephthalate) beverage bottles into porous carbon nanosheet (PCNS) through the combined processes of catalytic carbonization and KOH activation. PCNS features an ultrahigh specific surface area (2236 m2 g−1), hierarchically porous architecture, and a large pore volume (3.0 cm3 g−1). Such excellent physicochemical properties conjointly contribute to the outstanding supercapacitive performance: 169 F g−1 (6 M KOH) and 135 F g−1 (1 M Na2SO4). Furthermore, PCNS shows a high capacitance of 121 F g−1 and a corresponding energy density of 30.6 Wh kg−1 at 0.2 A g−1 in the electrolyte of 1 M TEATFB/PC. When the current density increases to 10 A g−1, the capacitance remains at 95 F g−1, indicating the extraordinary rate capability. This work not only proposes a facile approach to synthesize PCNS for supercapacitors, but also puts forward a potential sustainable way to recycle waste plastics and further hopefully mitigates the waste plastics‐related environmental issues. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020, 137, 48338.
中文翻译:
源自废聚对苯二甲酸乙二醇酯的高表面积多孔碳纳米片,用于超级电容器
将废塑料转变为有价值的碳材料已引起越来越多的关注。此外,由于碳材料比表面积大,电导率高以及稳定的理化特性,碳材料已被证明是双层超级电容器的理想电极材料。本文中,建立了一种易于操作的方法,以通过催化碳化和KOH活化的组合过程将废聚对苯二甲酸乙二醇酯饮料瓶有效地转化为多孔碳纳米片(PCNS)。PCNS具有超高的比表面积(2236 m 2 g -1),分层多孔结构和大孔体积(3.0 cm 3 g -1))。如此出色的物理化学特性共同为出色的超电容性能做出了贡献:169 F g -1(6 M KOH)和135 F g -1(1 M Na 2 SO 4)。此外,PCNS在1 M TEATFB / PC的电解质中显示出121 F g -1的高电容和0.2 A g -1的相应能量密度30.6 Wh kg -1。当电流密度增加到10 A g -1时,电容保持在95 F g -1,表示具有非凡的费率功能。这项工作不仅为合成超级电容器提供了一种简便的方法来合成PCNS,而且还提出了一种潜在的可持续方式来回收废塑料,并进一步希望减轻与废塑料有关的环境问题。分级为4 +©2019 Wiley Periodicals,Inc.J.Appl。Polym。科学 2020,137,48338。
更新日期:2019-08-02
中文翻译:
源自废聚对苯二甲酸乙二醇酯的高表面积多孔碳纳米片,用于超级电容器
将废塑料转变为有价值的碳材料已引起越来越多的关注。此外,由于碳材料比表面积大,电导率高以及稳定的理化特性,碳材料已被证明是双层超级电容器的理想电极材料。本文中,建立了一种易于操作的方法,以通过催化碳化和KOH活化的组合过程将废聚对苯二甲酸乙二醇酯饮料瓶有效地转化为多孔碳纳米片(PCNS)。PCNS具有超高的比表面积(2236 m 2 g -1),分层多孔结构和大孔体积(3.0 cm 3 g -1))。如此出色的物理化学特性共同为出色的超电容性能做出了贡献:169 F g -1(6 M KOH)和135 F g -1(1 M Na 2 SO 4)。此外,PCNS在1 M TEATFB / PC的电解质中显示出121 F g -1的高电容和0.2 A g -1的相应能量密度30.6 Wh kg -1。当电流密度增加到10 A g -1时,电容保持在95 F g -1,表示具有非凡的费率功能。这项工作不仅为合成超级电容器提供了一种简便的方法来合成PCNS,而且还提出了一种潜在的可持续方式来回收废塑料,并进一步希望减轻与废塑料有关的环境问题。分级为4 +©2019 Wiley Periodicals,Inc.J.Appl。Polym。科学 2020,137,48338。