当前位置: X-MOL 学术Adv. Energy Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Interfacial Charge Field in Hierarchical Yolk–Shell Nanocapsule Enables Efficient Immobilization and Catalysis of Polysulfides Conversion
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2019-07-31 , DOI: 10.1002/aenm.201901667
Handing Liu 1 , Ziliang Chen 1 , Lin Zhou 2 , Ke Pei 3 , Pingdi Xu 3 , Linshen Xin 3 , Qingwen Zeng 3 , Jie Zhang 3 , Renbing Wu 1 , Fang Fang 1 , Renchao Che 4 , Dalin Sun 1
Affiliation  

Inhibiting the shuttle effect of lithium polysulfides and accelerating their conversion kinetics are crucial for the development of high‐performance lithium–sulfur (Li–S) batteries. Herein, a modified template method is proposed to synthesize the robust yolk–shell sulfur host that is constructed by enveloping dispersive Fe2O3 nanoparticles within Mn3O4 nanosheet‐grafted hollow N‐doped porous carbon capsules (Fe2O3@N‐PC/Mn3O4‐S). When applied as a cathode for Li–S batteries, the as‐prepared Fe2O3@N‐PC/Mn3O4‐S can deliver capacities as high as 1122 mAh g−1 after 200 cycles at 0.5 C and 639 mAh g−1 after 1500 cycles at 10 C, respectively. Remarkably, even as the areal sulfur loading is increased to 5.1 mg cm−2, the cathode can still maintain a high areal specific capacity of 5.08 mAh cm−2 with a fading rate of only 0.076% per cycle over 100 cycles at 0.1 C. By a further combination analysis of electron holography and electron energy loss spectroscopy, the outstanding performance is revealed to be mainly traced to the oxygen‐vacancy‐induced interfacial charge field, which immobilizes and catalyzes the conversion of lithium polysulfides, assuring low polarization, fleet redox reaction kinetics, and sufficient utilization of sulfur. These new findings may shed light on the dependence of electrochemical performance on the heterostructure of sulfur hosts.

中文翻译:

分层卵黄壳纳米胶囊中的界面电荷场可实现高效固定化和催化多硫化物转化

抑制多硫化锂的穿梭效应并加快其转化动力学对于开发高性能锂硫(Li–S)电池至关重要。本文中,提出了一种改进的模板方法来合成坚固的蛋黄壳硫主体,该主体是通过将分散的Fe 2 O 3纳米粒子包裹在Mn 3 O 4纳米片接枝的中空N掺杂多孔碳胶囊(Fe 2 O 3 @N -PC / Mn 3 O 4 -S)。当用作Li–S电池的阴极时,所制备的Fe 2 O 3 @ N‐PC / Mn 3 O 4‐S在0.5 C下200次循环后可提供高达1122 mAh g -1的容量,在10 C下1500次循环后可提供高达639 mAh g -1的容量。值得注意的是,即使面积硫负载增加到5.1 mg cm -2,阴极仍可以保持5.08 mAh cm -2的高面积比容量。在0.1 C的100个循环中,每个循环的衰落率仅为0.076%。通过电子全息图和电子能量损失谱的进一步组合分析,发现其出色的性能主要归因于氧空位引起的界面电荷场固定并催化多硫化锂的转化,确保低极化,舰队氧化还原反应动力学和硫的充分利用。这些新发现可能揭示了电化学性能对硫主体异质结构的依赖性。
更新日期:2019-07-31
down
wechat
bug