Journal of CO2 Utilization ( IF 7.2 ) Pub Date : 2019-07-31 , DOI: 10.1016/j.jcou.2019.07.011 Hongju Wang , Dapeng Wu , Can Yang , Hai Lu , Zhiyong Gao , Fang Xu , Kai Jiang
Multi-functional amorphous TiO2 (a-TiO2) layer is uniformly decorated on ZIF-67 through a simple hydrothermal and low temperature calcination methods, which promotes the conversion efficiency and selectivity in the photoreduction of CO2 under visible light. The optimized [email protected]2 demonstrates high CO production of 43.8 μmol after 4 h irradiation with high CO selectivity of 67.2%, which are substantially enhanced compared with that of pristine ZIF-67. State and transient optical and electrochemical tests indicate that the multi-functional a-TiO2 layer not only leads to enhanced utilization of incident light by the effective light scattering effect, but also serves as blocking layer to suppress the charge recombination by restraining the backwards photoelectron flow without interrupting the photoelectron transfer from the photosensitizer to ZIF-67. In addition, the a-TiO2 layer introduces abundant mesoporous characteristics in the catalyst, which facilitates the mass diffusion without scarifying the overall CO2 absorption capacity. Meanwhile, it is tentatively believed that the H3O+ is more likely adsorbed on the hydrophilic a-TiO2 with highly polarized surface, which inhibits the H2 generation and results in the pleasant CO selectivity. Furthermore, the a-TiO2 shell effectively suppresses the photo-corrosion of ZIF-67, which finally leads to the superior photocatalytic performances along with the high stability.
中文翻译:
ZIF-67上的多功能非晶TiO 2层,用于增强可见光下的CO 2光还原性能
通过简单的水热和低温煅烧方法,在ZIF-67上均匀装饰多功能非晶TiO 2(a-TiO 2)层,从而提高了可见光下CO 2光还原的转化效率和选择性。优化的[电子邮件保护的] 2展示了4 h辐射后高CO产生43.8μmol,CO选择性高达67.2%,与原始ZIF-67相比大大提高了。状态和瞬态光学和电化学测试表明,多功能a-TiO 2该层不仅通过有效的光散射效应导致入射光的利用增强,而且还用作阻挡层,通过在不中断光电子从光敏剂向ZIF-67的转移的情况下抑制向后的光电子流来抑制电荷复合。另外,a-TiO 2层在催化剂中引入了丰富的中孔特性,这有助于质量扩散而不损害总的CO 2吸收能力。同时,暂时认为H 3 O +更有可能吸附在具有高极化表面的亲水性a-TiO 2上,从而抑制了H 2。产生并产生令人愉悦的一氧化碳选择性。此外,a-TiO 2壳有效地抑制了ZIF-67的光腐蚀,最终导致了优异的光催化性能和高稳定性。