Nano Energy ( IF 16.8 ) Pub Date : 2019-07-30 , DOI: 10.1016/j.nanoen.2019.103942 Mingqiang Liu , Qinghe Zhao , Hao Liu , Jinglong Yang , Xin Chen , Luyi Yang , Yanhui Cui , Weiyuan Huang , Wenguang Zhao , Aoye Song , Yuetao Wang , Shouxiang Ding , Yongli Song , Guoyu Qian , Haibiao Chen , Feng Pan
Mild aqueous Zn–MnO2 battery attracts lots of attention in energy storage filed due to its low cost, high safety and environmental friendliness. To achieve high-performance in battery, phase evolution processes of MnO2 during synthesis and electrochemical reactions need to be understood. Herein, the phase evolution during microwave hydrothermal and correlated battery performance of β-MnO2 are studied. The results demonstrate a phase evolution mechanism from an initial mixture of vernadite, nsutite, and pyrolusite (β-MnO2) to a final single β-MnO2 phase, along with enhanced structure stability, increased Mn valence, and decreased BET surface area. It is found that only when microwave hydrothermal time (MHT) ≥ 120 min, β-MnO2 showing both high capacity and excellent cycling performance can be obtained. β-MnO2 prepared under a MHT of 120 min shows a high reversible capacity of 288 mA h g−1 with a median voltage of 1.36 V vs. Zn/Zn2+, and high capacity retentions of 91.8% after 200 cycles at 0.5C and 84.3% after 1000 cycles at 4C, respectively. In addition, the formation of inactive ZnMn2O4 during cycling is observed, which contributes to the capacity fading of β-MnO2 after long-term cycling. This research makes a step forward to the practical application of Zn–MnO2 batteries, and contributes to the large-scale energy storage field.
中文翻译:
β-的MnO调谐相位演化2期间微波水热合成高性能水性锌离子电池
温和的Zn-MnO 2水性电池由于其低成本,高安全性和环境友好性而在能量存储领域引起了很多关注。为了在电池中实现高性能,需要了解MnO 2在合成和电化学反应过程中的相变过程。在此,微波水热和β-的MnO相关的电池性能在相位演化2进行了研究。结果表明从(β-MnO的水羟锰矿,nsutite,和软锰矿的初始混合物的相位演化机构2)至最终单β-MnO的2相,以及增强的结构稳定性,增加的锰价和减少的BET表面积。据发现,只有当微波水热时间(MHT)≥120分钟,β-MnO的2可以得到表示高容量和优异的循环性能。β-的MnO 2下120个分钟节目288毫安ħg的高可逆容量一个MHT制备-1与1.36 V的中值电压相对于锌/锌2+,和以0.5C 200次循环后的91.8%高容量维持率在4C下经过1000次循环后分别为84.3%和84.3%。此外,不活动ZnMn形成2 ö 4循环期间观察到,这有助于容量衰减的β-MnO的2长期骑车之后。这项研究为Zn-MnO 2电池的实际应用迈出了一步,并为大规模的储能领域做出了贡献。