当前位置:
X-MOL 学术
›
Adv. Energy Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Versatile N‐Doped MXene Ink for Printed Electrochemical Energy Storage Application
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2019-07-30 , DOI: 10.1002/aenm.201901839 Lianghao Yu 1 , Zhaodi Fan 1 , Yuanlong Shao 2 , Zhengnan Tian 1 , Jingyu Sun 1 , Zhongfan Liu 1, 3
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2019-07-30 , DOI: 10.1002/aenm.201901839 Lianghao Yu 1 , Zhaodi Fan 1 , Yuanlong Shao 2 , Zhengnan Tian 1 , Jingyu Sun 1 , Zhongfan Liu 1, 3
Affiliation
Printing is regarded as a revolutionary and feasible technique to guide the fabrication of versatile functional systems with designed architectures. 2D MXenes are nowadays attractive in printed energy storage devices. However, owing to the van der Waals interaction between the MXene layers, the restacking issues within the printed electrodes can significantly impede the ion/electrolyte transport and hence handicap the electrochemical performances. Herein, a melamine formaldehyde templating method is demonstrated to develop crumpled nitrogen‐doped MXene (MXene‐N) nanosheets. The nitrogen doping boosts the electrochemical performances of MXene via enhanced conductivity and redox activity. Accordingly, two types of MXene‐N inks are prepared throughout the optimization of the ink viscosity to fit the 2D screen printing and 3D extrusion printing, respectively. As a result, the screen printed MXene‐N microsupercapacitor delivers an areal capacitance of 70.1 mF cm−2 and outstanding mechanical robustness. Furthermore, the 3D‐printed MXene‐N based supercapacitor manifests an areal capacitance of 8.2 F cm−2 for a three‐layered electrode and readily stores a high areal energy density of 0.42 mWh cm−2. The approach to harnessing such versatile MXene‐N inks offers distinctive insights into the printed energy storage systems with high areal energy density and large scalability.
中文翻译:
多功能N掺杂MXene油墨,用于印刷电化学储能应用
印刷被认为是指导具有设计架构的通用功能系统的制造的革命性且可行的技术。如今,二维MXene在印刷储能设备中具有吸引力。然而,由于MXene层之间的范德华相互作用,在印刷电极内的再堆叠问题可显着阻碍离子/电解质的运输,因此不利于电化学性能。在本文中,已证明三聚氰胺甲醛模板化方法可以开发出皱折的氮掺杂MXene(MXene-N)纳米片。氮掺杂通过增强电导率和氧化还原活性来提高MXene的电化学性能。因此,在优化油墨粘度的过程中,准备了两种类型的MXene-N油墨,以适应2D丝网印刷和3D挤出印刷,分别。结果,丝网印刷的MXene-N微型超级电容器可提供70.1 mF cm的面电容-2和出色的机械强度。此外,3D打印的基于MXene-N的超级电容器对于三层电极表现出8.2 F cm -2的面电容,并易于存储0.42 mWh cm -2的高面能量密度。利用这种多功能的MXene-N墨水的方法可以以高的面能量密度和较大的可扩展性为印刷储能系统提供独特的见解。
更新日期:2019-07-30
中文翻译:
多功能N掺杂MXene油墨,用于印刷电化学储能应用
印刷被认为是指导具有设计架构的通用功能系统的制造的革命性且可行的技术。如今,二维MXene在印刷储能设备中具有吸引力。然而,由于MXene层之间的范德华相互作用,在印刷电极内的再堆叠问题可显着阻碍离子/电解质的运输,因此不利于电化学性能。在本文中,已证明三聚氰胺甲醛模板化方法可以开发出皱折的氮掺杂MXene(MXene-N)纳米片。氮掺杂通过增强电导率和氧化还原活性来提高MXene的电化学性能。因此,在优化油墨粘度的过程中,准备了两种类型的MXene-N油墨,以适应2D丝网印刷和3D挤出印刷,分别。结果,丝网印刷的MXene-N微型超级电容器可提供70.1 mF cm的面电容-2和出色的机械强度。此外,3D打印的基于MXene-N的超级电容器对于三层电极表现出8.2 F cm -2的面电容,并易于存储0.42 mWh cm -2的高面能量密度。利用这种多功能的MXene-N墨水的方法可以以高的面能量密度和较大的可扩展性为印刷储能系统提供独特的见解。