当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Ultrafast, Controllable Synthesis of Sub-Nano Metallic Clusters through Defect Engineering
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2019-07-29 00:00:00 , DOI: 10.1021/acsami.9b07198 Yonggang Yao 1 , Zhennan Huang 2 , Pengfei Xie 3 , Tangyuan Li 1 , Steven D. Lacey 1 , Miaolun Jiao 1 , Hua Xie 1 , Kun Kelvin Fu 1 , Rohit Jiji Jacob 4 , Dylan Jacob Kline 4 , Yong Yang 4 , Michael R. Zachariah 4 , Chao Wang 3 , Reza Shahbazian-Yassar 2 , Liangbing Hu 1
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2019-07-29 00:00:00 , DOI: 10.1021/acsami.9b07198 Yonggang Yao 1 , Zhennan Huang 2 , Pengfei Xie 3 , Tangyuan Li 1 , Steven D. Lacey 1 , Miaolun Jiao 1 , Hua Xie 1 , Kun Kelvin Fu 1 , Rohit Jiji Jacob 4 , Dylan Jacob Kline 4 , Yong Yang 4 , Michael R. Zachariah 4 , Chao Wang 3 , Reza Shahbazian-Yassar 2 , Liangbing Hu 1
Affiliation
Supported metallic nanoclusters (NCs, < 2 nm) are of great interests in various catalytic reactions with enhanced activities and selectivities, yet it is still challenging to efficiently and controllably synthesize ultrasmall NCs with a high-dispersal density. Here we report the in situ synthesis of surfactant-free, ultrasmall, and uniform NCs via a rapid thermal shock on defective substrates. This is achieved by using high-temperature synthesis with extremely fast kinetics while limiting the synthesis time down to milliseconds (e.g., ∼1800 K for 55 ms) to avoid aggregation. Through defect engineering and optimized loading, the particle size can be robustly tuned from >50 nm nanoparticles to <1 nm uniform NCs with a high-dispersal density. We demonstrate that the ultrasmall NCs exhibit drastically improved activities for catalytic CO oxidation as compared to their nanoparticulated counterparts. In addition, the reported method shows generality in synthesizing most metallic NCs (e.g., Pt, Ru, Ir, Ni) in an extremely facile and efficient manner. The ultrafast and controllable synthesis of uniform, high-density, and size-controllable NCs paves the way for the utilization and nanomanufacturing of NCs for a range of catalytic reactions.
中文翻译:
通过缺陷工程超快,可控地合成亚纳米金属团簇
负载的金属纳米团簇(NCs,<2 nm)在各种催化反应中具有增强的活性和选择性,引起了人们的极大兴趣,但是,要有效地和可控制地合成具有高分散密度的超小型NCs,仍然是一个挑战。在这里我们报告通过有缺陷的基材上的快速热冲击原位合成无表面活性剂,超小且均匀的NCs。这是通过使用具有极快动力学的高温合成,同时将合成时间限制到毫秒(例如,约1800 K持续55 ms)来避免聚集来实现的。通过缺陷工程和优化的装载量,可以将粒径从> 50 nm纳米颗粒稳健地调整到具有高分散密度的<1 nm均匀NC。我们证明,与它们的纳米颗粒对应物相比,超小型NCs显着提高了催化CO氧化的活性。另外,所报道的方法显示出以极其容易和有效的方式合成大多数金属NC(例如,Pt,Ru,Ir,Ni)的通用性。均匀,高密度和尺寸可控制的NC的超快且可控的合成为NC用于一系列催化反应的利用和纳米制造铺平了道路。
更新日期:2019-07-29
中文翻译:
通过缺陷工程超快,可控地合成亚纳米金属团簇
负载的金属纳米团簇(NCs,<2 nm)在各种催化反应中具有增强的活性和选择性,引起了人们的极大兴趣,但是,要有效地和可控制地合成具有高分散密度的超小型NCs,仍然是一个挑战。在这里我们报告通过有缺陷的基材上的快速热冲击原位合成无表面活性剂,超小且均匀的NCs。这是通过使用具有极快动力学的高温合成,同时将合成时间限制到毫秒(例如,约1800 K持续55 ms)来避免聚集来实现的。通过缺陷工程和优化的装载量,可以将粒径从> 50 nm纳米颗粒稳健地调整到具有高分散密度的<1 nm均匀NC。我们证明,与它们的纳米颗粒对应物相比,超小型NCs显着提高了催化CO氧化的活性。另外,所报道的方法显示出以极其容易和有效的方式合成大多数金属NC(例如,Pt,Ru,Ir,Ni)的通用性。均匀,高密度和尺寸可控制的NC的超快且可控的合成为NC用于一系列催化反应的利用和纳米制造铺平了道路。