Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Atomic Carbon Layers Supported Pt Nanoparticles for Minimized CO Poisoning and Maximized Methanol Oxidation.
Small ( IF 13.0 ) Pub Date : 2019-07-28 , DOI: 10.1002/smll.201902951
Gailing Bai 1, 2, 3 , Chang Liu 1, 2 , Zhe Gao 1 , Baoying Lu 4 , Xili Tong 1 , Xiangyun Guo 1, 5 , Nianjun Yang 6
Small ( IF 13.0 ) Pub Date : 2019-07-28 , DOI: 10.1002/smll.201902951
Gailing Bai 1, 2, 3 , Chang Liu 1, 2 , Zhe Gao 1 , Baoying Lu 4 , Xili Tong 1 , Xiangyun Guo 1, 5 , Nianjun Yang 6
Affiliation
![]() |
Maximizing activity of Pt catalysts toward methanol oxidation reaction (MOR) together with minimized poisoning of adsorbed CO during MOR still remains a big challenge. In the present work, uniform and well-distributed Pt nanoparticles (NPs) grown on an atomic carbon layer, that is in situ formed by means of dry-etching of silicon carbide nanoparticles (SiC NPs) with CCl4 gas, are explored as potential catalysts for MOR. Significantly, as-synthesized catalysts exhibit remarkably higher MOR catalytic activity (e.g., 647.63 mA mg-1 at a peak potential of 0.85 V vs RHE) and much improved anti-CO poisoning ability than the commercial Pt/C catalysts, Pt/carbon nanotubes, and Pt/graphene catalysts. Moreover, the amount of expensive Pt is a few times lower than that of the commercial and reported catalyst systems. As confirmed from density functional theory (DFT) calculations and X-ray absorption fine structure (XAFS) measurements, such high performance is due to reduced adsorption energy of CO on the Pt NPs and an increased amount of adsorbed energy OH species that remove adsorbed CO fast and efficiently. Therefore, these catalysts can be utilized for the development of large-scale and industry-orientated direct methanol fuel cells.
中文翻译:
原子碳层支持Pt纳米颗粒,可最大程度地减少CO中毒和最大程度的甲醇氧化。
在MOR期间使Pt催化剂对甲醇氧化反应(MOR)的活性最大化以及吸附的CO的中毒最小化仍然是一个很大的挑战。在当前的工作中,作为潜在的催化剂,人们探索了在原子碳层上生长的均匀且分布均匀的Pt纳米颗粒(NPs),该碳纳米管是通过用CCl4气体干法刻蚀碳化硅纳米颗粒(SiC NPs)原位形成的。对于MOR。值得注意的是,合成后的催化剂与商用Pt / C催化剂Pt /碳纳米管相比,具有显着更高的MOR催化活性(例如,峰值电位为0.85 V vs RHE时为647.63 mA mg-1),并且抗CO中毒能力大大提高。 ,以及Pt /石墨烯催化剂。而且,昂贵的Pt的量比商业的和报道的催化剂体系的量低几倍。如密度泛函理论(DFT)计算和X射线吸收精细结构(XAFS)测量所证实的,如此高的性能归因于CO在Pt NP上的吸附能降低,并且吸附能的OH种类增加,从而去除了吸附的CO。快速高效。因此,这些催化剂可用于大规模和工业化的直接甲醇燃料电池的开发。
更新日期:2019-07-28
中文翻译:

原子碳层支持Pt纳米颗粒,可最大程度地减少CO中毒和最大程度的甲醇氧化。
在MOR期间使Pt催化剂对甲醇氧化反应(MOR)的活性最大化以及吸附的CO的中毒最小化仍然是一个很大的挑战。在当前的工作中,作为潜在的催化剂,人们探索了在原子碳层上生长的均匀且分布均匀的Pt纳米颗粒(NPs),该碳纳米管是通过用CCl4气体干法刻蚀碳化硅纳米颗粒(SiC NPs)原位形成的。对于MOR。值得注意的是,合成后的催化剂与商用Pt / C催化剂Pt /碳纳米管相比,具有显着更高的MOR催化活性(例如,峰值电位为0.85 V vs RHE时为647.63 mA mg-1),并且抗CO中毒能力大大提高。 ,以及Pt /石墨烯催化剂。而且,昂贵的Pt的量比商业的和报道的催化剂体系的量低几倍。如密度泛函理论(DFT)计算和X射线吸收精细结构(XAFS)测量所证实的,如此高的性能归因于CO在Pt NP上的吸附能降低,并且吸附能的OH种类增加,从而去除了吸附的CO。快速高效。因此,这些催化剂可用于大规模和工业化的直接甲醇燃料电池的开发。