当前位置:
X-MOL 学术
›
Nano Lett.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Cyborg Organoids: Implantation of Nanoelectronics via Organogenesis for Tissue-Wide Electrophysiology.
Nano Letters ( IF 9.6 ) Pub Date : 2019-08-02 , DOI: 10.1021/acs.nanolett.9b02512 Qiang Li 1 , Kewang Nan 1 , Paul Le Floch 1 , Zuwan Lin 2 , Hao Sheng 1 , Thomas S Blum 1 , Jia Liu 1
Nano Letters ( IF 9.6 ) Pub Date : 2019-08-02 , DOI: 10.1021/acs.nanolett.9b02512 Qiang Li 1 , Kewang Nan 1 , Paul Le Floch 1 , Zuwan Lin 2 , Hao Sheng 1 , Thomas S Blum 1 , Jia Liu 1
Affiliation
Tissue-wide electrophysiology with single-cell and millisecond spatiotemporal resolution is critical for heart and brain studies. Issues arise, however, from the invasive, localized implantation of electronics that destroys well-connected cellular networks within matured organs. Here, we report the creation of cyborg organoids: the three-dimensional (3D) assembly of soft, stretchable mesh nanoelectronics across the entire organoid by the cell-cell attraction forces from 2D-to-3D tissue reconfiguration during organogenesis. We demonstrate that stretchable mesh nanoelectronics can migrate with and grow into the initial 2D cell layers to form the 3D organoid structure with minimal impact on tissue growth and differentiation. The intimate contact between the dispersed nanoelectronics and cells enables us to chronically and systematically observe the evolution, propagation, and synchronization of the bursting dynamics in human cardiac organoids through their entire organogenesis.
中文翻译:
电子人的类器官:通过器官发生植入纳米电子,用于组织范围的全电生理学。
具有单细胞和毫秒时空分辨率的全组织电生理学对于心脏和大脑研究至关重要。然而,问题是由于电子器件的侵入性,局部植入而破坏了成熟器官内连接良好的细胞网络。在这里,我们报告了半机械人的创造:通过器官发生过程中从2D到3D组织重构的细胞-细胞吸引力,横跨整个有机体的柔软,可拉伸的网状纳米电子器件的三维(3D)组装。我们证明了可拉伸的网格纳米电子学可以迁移并生长到初始的2D细胞层中,以形成对组织生长和分化影响最小的3D类器官结构。
更新日期:2019-07-26
中文翻译:
电子人的类器官:通过器官发生植入纳米电子,用于组织范围的全电生理学。
具有单细胞和毫秒时空分辨率的全组织电生理学对于心脏和大脑研究至关重要。然而,问题是由于电子器件的侵入性,局部植入而破坏了成熟器官内连接良好的细胞网络。在这里,我们报告了半机械人的创造:通过器官发生过程中从2D到3D组织重构的细胞-细胞吸引力,横跨整个有机体的柔软,可拉伸的网状纳米电子器件的三维(3D)组装。我们证明了可拉伸的网格纳米电子学可以迁移并生长到初始的2D细胞层中,以形成对组织生长和分化影响最小的3D类器官结构。