当前位置: X-MOL 学术J. Power Sources › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effective carbon constraint of MnS nanoparticles as high-performance anode of lithium-ion batteries
Journal of Power Sources ( IF 8.1 ) Pub Date : 2019-07-26 , DOI: 10.1016/j.jpowsour.2019.226931
Ramon A. Paredes Camacho , Ai-Min Wu , Xiao-Zhe Jin , Xu-Feng Dong , Xiao-Na Li , Hao Huang

Despite possessing a high theoretical capacity, MnS has a rather complex lithium kinetic diffusion and poor mechanical stability that hinders its application in energy storage devices like lithium-ion batteries. This study is focused on overcoming the drawbacks of MnS anode material by assembling a carbon-constraint MnS nanocomposite in a core-shell configuration. This structure is obtained by a simple route involving DC plasma evaporation of [email protected] nanoparticles and posterior thermal sulfurization process. As anode material in a Li-ion battery, [email protected] attains high specific capacity of 890 mAh g−1 after 500 cycles at 500 mA g−1. It also shows remarkable high rate capability with capacity values of 705, 684, 643, 578, and 495 mAh g−1 at current densities of 100, 200, 500, 1000, and 2000 mA g−1, respectively. This exceptional electrochemical response is endorsed to the synergetic effect of the smart design of a core-shell architecture. The carbonaceous shell enhances the lithium-ion diffusion towards the active MnS core and preserves structural stability during the long cycling process.



中文翻译:

MnS纳米颗粒作为锂离子电池高性能阳极的有效碳约束

尽管具有很高的理论容量,但是MnS具有相当复杂的锂动力学扩散和较差的机械稳定性,从而阻碍了它在锂离子电池等储能设备中的应用。这项研究的重点是通过以核壳结构组装碳约束的MnS纳米复合材料来克服MnS阳极材料的缺点。这种结构是通过一种简单的途径获得的,该途径涉及[等离子保护的]纳米粒子的DC等离子体蒸发和后热硫化过程。作为锂离子电池的负极材料,[电子邮件保护]在500 mA g -1下经过500次循环后具有890 mAh g -1的高比容量。它还显示出非凡的高倍率能力,容量值为705、684、643、578和495 mAh g -1在分别为100、200、500、1000和2000 mA g -1的电流密度下。这种出色的电化学响应被认可为核-壳结构智能设计的协同效应。碳质壳增强了锂离子向活性MnS核的扩散,并在长时间循环过程中保留了结构稳定性。

更新日期:2019-07-26
down
wechat
bug