当前位置:
X-MOL 学术
›
Adv. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Tunable Moiré Superlattice of Artificially Twisted Monolayers.
Advanced Materials ( IF 27.4 ) Pub Date : 2019-07-24 , DOI: 10.1002/adma.201901077 Po-Yen Chen,Xin-Quan Zhang,Ying-Yu Lai,Erh-Chen Lin,Chun-An Chen,Syu-You Guan,Jyun-Jyun Chen,Zhe-Hong Yang,Yu-Wen Tseng,Shangjr Gwo,Chia-Seng Chang,Lih-Juann Chen,Yi-Hsien Lee
Advanced Materials ( IF 27.4 ) Pub Date : 2019-07-24 , DOI: 10.1002/adma.201901077 Po-Yen Chen,Xin-Quan Zhang,Ying-Yu Lai,Erh-Chen Lin,Chun-An Chen,Syu-You Guan,Jyun-Jyun Chen,Zhe-Hong Yang,Yu-Wen Tseng,Shangjr Gwo,Chia-Seng Chang,Lih-Juann Chen,Yi-Hsien Lee
Twisting between two stacked monolayers modulates periodic potentials and forms the Moiré electronic superlattices, which offers an additional degree of freedom to alter material property. Considerable unique observations, including unconventional superconductivity, coupled spin-valley states, and quantized interlayer excitons are correlated to the electronic superlattices but further study requires reliable routes to study the Moiré in real space. Scanning tunneling microscopy (STM) is ideal to precisely probe the Moiré superlattice and correlate coupled parameters among local electronic structures, strains, defects, and band alignment at atomic scale. Here, a clean route is developed to construct twisted lattices using synthesized monolayers for fundamental studies. Diverse Moiré superlattices are predicted and successfully observed with STM at room temperature. Electrical tuning of the Moiré superlattice is achieved with stacked TMD on graphite.
中文翻译:
人工扭曲单层膜的可调莫尔超晶格。
在两个堆叠的单分子层之间扭曲会调制周期性电势,并形成莫尔电子超晶格,从而提供了更大的自由度来改变材料特性。大量非常规超导性,耦合的自旋谷态和量化的层间激子等独特的观察与电子超晶格相关,但进一步的研究需要可靠的途径来研究真实空间中的莫尔条纹。扫描隧道显微镜(STM)是精确探测莫尔超晶格并在原子尺度上关联局部电子结构,应变,缺陷和能带排列之间耦合参数的理想选择。在这里,开发了一种干净的方法来使用合成的单分子层构建扭曲的晶格,以进行基础研究。在室温下使用STM可以预测并成功观察到各种莫尔超晶格。莫尔超晶格的电调谐是通过在石墨上堆叠TMD来实现的。
更新日期:2019-07-24
中文翻译:
人工扭曲单层膜的可调莫尔超晶格。
在两个堆叠的单分子层之间扭曲会调制周期性电势,并形成莫尔电子超晶格,从而提供了更大的自由度来改变材料特性。大量非常规超导性,耦合的自旋谷态和量化的层间激子等独特的观察与电子超晶格相关,但进一步的研究需要可靠的途径来研究真实空间中的莫尔条纹。扫描隧道显微镜(STM)是精确探测莫尔超晶格并在原子尺度上关联局部电子结构,应变,缺陷和能带排列之间耦合参数的理想选择。在这里,开发了一种干净的方法来使用合成的单分子层构建扭曲的晶格,以进行基础研究。在室温下使用STM可以预测并成功观察到各种莫尔超晶格。莫尔超晶格的电调谐是通过在石墨上堆叠TMD来实现的。