当前位置:
X-MOL 学术
›
Nat. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Self-gating in semiconductor electrocatalysis.
Nature Materials ( IF 37.2 ) Pub Date : 2019-07-22 , DOI: 10.1038/s41563-019-0426-0
Yongmin He 1, 2 , Qiyuan He 1 , Luqing Wang 3 , Chao Zhu 1 , Prafful Golani 1 , Albertus D Handoko 4 , Xuechao Yu 2 , Caitian Gao 2 , Mengning Ding 5 , Xuewen Wang 1 , Fucai Liu 6 , Qingsheng Zeng 1 , Peng Yu 1 , Shasha Guo 1 , Boris I Yakobson 3 , Liang Wang 7 , Zhi Wei Seh 4 , Zhuhua Zhang 8 , Minghong Wu 7 , Qi Jie Wang 2, 9 , Hua Zhang 1, 10 , Zheng Liu 1, 9, 11, 12
Nature Materials ( IF 37.2 ) Pub Date : 2019-07-22 , DOI: 10.1038/s41563-019-0426-0
Yongmin He 1, 2 , Qiyuan He 1 , Luqing Wang 3 , Chao Zhu 1 , Prafful Golani 1 , Albertus D Handoko 4 , Xuechao Yu 2 , Caitian Gao 2 , Mengning Ding 5 , Xuewen Wang 1 , Fucai Liu 6 , Qingsheng Zeng 1 , Peng Yu 1 , Shasha Guo 1 , Boris I Yakobson 3 , Liang Wang 7 , Zhi Wei Seh 4 , Zhuhua Zhang 8 , Minghong Wu 7 , Qi Jie Wang 2, 9 , Hua Zhang 1, 10 , Zheng Liu 1, 9, 11, 12
Affiliation
![]() |
The semiconductor-electrolyte interface dominates the behaviours of semiconductor electrocatalysis, which has been modelled as a Schottky-analogue junction according to classical electron transfer theories. However, this model cannot be used to explain the extremely high carrier accumulations in ultrathin semiconductor catalysis observed in our work. Inspired by the recently developed ion-controlled electronics, we revisit the semiconductor-electrolyte interface and unravel a universal self-gating phenomenon through microcell-based in situ electronic/electrochemical measurements to clarify the electronic-conduction modulation of semiconductors during the electrocatalytic reaction. We then demonstrate that the type of semiconductor catalyst strongly correlates with their electrocatalysis; that is, n-type semiconductor catalysts favour cathodic reactions such as the hydrogen evolution reaction, p-type ones prefer anodic reactions such as the oxygen evolution reaction and bipolar ones tend to perform both anodic and cathodic reactions. Our study provides new insight into the electronic origin of the semiconductor-electrolyte interface during electrocatalysis, paving the way for designing high-performance semiconductor catalysts.
中文翻译:
半导体电催化中的自选通。
半导体-电解质界面主导着半导体电催化的行为,根据经典的电子转移理论,半导体电催化的行为已被建模为肖特基-类比结。但是,该模型不能用来解释在我们的工作中观察到的超薄半导体催化中极高的载流子积累。受最近开发的离子控制电子学的启发,我们通过基于微电池的原位电子/电化学测量来重新审视半导体-电解质界面并揭示普遍的自门控现象,以阐明电催化反应期间半导体的电子传导调制。然后,我们证明了半导体催化剂的类型与其电催化作用密切相关。那是,n型半导体催化剂有利于阴极反应,例如氢逸出反应,p型催化剂则优选阳极反应,例如氧逸出反应,而双极性催化剂则倾向于同时进行阳极反应和阴极反应。我们的研究为电催化过程中半导体-电解质界面的电子起源提供了新的见解,为设计高性能半导体催化剂铺平了道路。
更新日期:2019-07-22
中文翻译:

半导体电催化中的自选通。
半导体-电解质界面主导着半导体电催化的行为,根据经典的电子转移理论,半导体电催化的行为已被建模为肖特基-类比结。但是,该模型不能用来解释在我们的工作中观察到的超薄半导体催化中极高的载流子积累。受最近开发的离子控制电子学的启发,我们通过基于微电池的原位电子/电化学测量来重新审视半导体-电解质界面并揭示普遍的自门控现象,以阐明电催化反应期间半导体的电子传导调制。然后,我们证明了半导体催化剂的类型与其电催化作用密切相关。那是,n型半导体催化剂有利于阴极反应,例如氢逸出反应,p型催化剂则优选阳极反应,例如氧逸出反应,而双极性催化剂则倾向于同时进行阳极反应和阴极反应。我们的研究为电催化过程中半导体-电解质界面的电子起源提供了新的见解,为设计高性能半导体催化剂铺平了道路。