当前位置:
X-MOL 学术
›
Nat. Commun.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Dynamical nonlinear memory capacitance in biomimetic membranes.
Nature Communications ( IF 14.7 ) Pub Date : 2019-07-19 , DOI: 10.1038/s41467-019-11223-8 Joseph S Najem 1, 2 , Md Sakib Hasan 3 , R Stanley Williams 4 , Ryan J Weiss 3 , Garrett S Rose 3 , Graham J Taylor 1, 5 , Stephen A Sarles 1 , C Patrick Collier 6
Nature Communications ( IF 14.7 ) Pub Date : 2019-07-19 , DOI: 10.1038/s41467-019-11223-8 Joseph S Najem 1, 2 , Md Sakib Hasan 3 , R Stanley Williams 4 , Ryan J Weiss 3 , Garrett S Rose 3 , Graham J Taylor 1, 5 , Stephen A Sarles 1 , C Patrick Collier 6
Affiliation
Two-terminal memory elements, or memelements, capable of co-locating signal processing and memory via history-dependent reconfigurability at the nanoscale are vital for next-generation computing materials striving to match the brain's efficiency and flexible cognitive capabilities. While memory resistors, or memristors, have been widely reported, other types of memelements remain underexplored or undiscovered. Here we report the first example of a volatile, voltage-controlled memcapacitor in which capacitive memory arises from reversible and hysteretic geometrical changes in a lipid bilayer that mimics the composition and structure of biomembranes. We demonstrate that the nonlinear dynamics and memory are governed by two implicitly-coupled, voltage-dependent state variables-membrane radius and thickness. Further, our system is capable of tuneable signal processing and learning via synapse-like, short-term capacitive plasticity. These findings will accelerate the development of low-energy, biomolecular neuromorphic memelements, which, in turn, could also serve as models to study capacitive memory and signal processing in neuronal membranes.
中文翻译:
仿生膜中的动态非线性记忆电容。
能够通过纳米级的历史依赖可重构性将信号处理和记忆定位在一起的两末端记忆元件(memelement),对于努力与大脑的效率和灵活的认知能力相匹配的下一代计算材料至关重要。尽管记忆电阻器或忆阻器已被广泛报道,但其他类型的忆阻器仍未得到充分探索或发现。在这里,我们报告了一个易失性的,电压控制的薄膜电容器的第一个示例,其中的电容性存储来自模仿生物膜的组成和结构的脂质双层中可逆和滞后的几何变化。我们证明了非线性动力学和记忆是由两个隐式耦合的,依赖于电压的状态变量控制的,即膜的半径和厚度。进一步,我们的系统能够通过类似突触的短期电容可塑性来进行可调信号处理和学习。这些发现将加速低能量生物分子神经形态因子的发展,而后者又可以用作研究神经元膜中的电容性记忆和信号处理的模型。
更新日期:2019-07-19
中文翻译:
仿生膜中的动态非线性记忆电容。
能够通过纳米级的历史依赖可重构性将信号处理和记忆定位在一起的两末端记忆元件(memelement),对于努力与大脑的效率和灵活的认知能力相匹配的下一代计算材料至关重要。尽管记忆电阻器或忆阻器已被广泛报道,但其他类型的忆阻器仍未得到充分探索或发现。在这里,我们报告了一个易失性的,电压控制的薄膜电容器的第一个示例,其中的电容性存储来自模仿生物膜的组成和结构的脂质双层中可逆和滞后的几何变化。我们证明了非线性动力学和记忆是由两个隐式耦合的,依赖于电压的状态变量控制的,即膜的半径和厚度。进一步,我们的系统能够通过类似突触的短期电容可塑性来进行可调信号处理和学习。这些发现将加速低能量生物分子神经形态因子的发展,而后者又可以用作研究神经元膜中的电容性记忆和信号处理的模型。