当前位置:
X-MOL 学术
›
Sol. Energy Mater. Sol. Cells
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Evidence for plasmonic hot electron injection induced superior visible light photocatalysis by g-C3N4 nanosheets decorated with Ag–TiO2(B) and Au–TiO2(B) nanorods
Solar Energy Materials and Solar Cells ( IF 6.3 ) Pub Date : 2019-10-01 , DOI: 10.1016/j.solmat.2019.110053 Kamal Kumar Paul , P.K. Giri , H. Sugimoto , Minoru Fujii , Biswajit Choudhury
Solar Energy Materials and Solar Cells ( IF 6.3 ) Pub Date : 2019-10-01 , DOI: 10.1016/j.solmat.2019.110053 Kamal Kumar Paul , P.K. Giri , H. Sugimoto , Minoru Fujii , Biswajit Choudhury
Abstract Hot electrons produced by the surface plasmon decay can be efficiently utilized to drive photochemical reactions on a semiconductor surface. Considering this aspect of plasmonics, we have evaluated the visible light photocatalytic performance of Ag–TiO2(B)–C3N4 and Au–TiO2(B)–C3N4 heterostructures in the degradation of rhodamine B (RhB) and phenol. The synergetic effect of plasmonic hot electron injection and interfacial charge transfer in the heterostructures lead to 6–9 fold enhancement in the photodecomposition rate of RhB (phenol) over TiO2(B) and C3N4. Time-resolved photoluminescence study shows fast charge transfer through the integrated network of the heterostructure. The photocurrent is measured at 470 nm, 510 nm and 575 nm, near the plasmonic excitations of Ag and Au as well as under white light illumination (400–800 nm). Plasmonic systems show more than 6-fold enhancement in photocurrent over bare TiO2(B) under illumination near monochromatic plasmonic excitation. The overall photocurrent resulting from white light illumination is 2-fold stronger than that under plasmonic excitation. The increase is due to the contribution from Ti3+ excitation, hot electron injection, and charge transfer from TiO2(B) to C3N4. We propose that Ti3+ states in TiO2(B) provide channels for direct hot electron transfer from metal to semiconductor facilitating charge separation for participation in photocatalysis.
中文翻译:
用Ag-TiO2(B)和Au-TiO2(B)纳米棒装饰的g-C3N4纳米片诱导等离子体热电子注入诱导优异可见光光催化的证据
摘要 表面等离子体衰变产生的热电子可以有效地用于驱动半导体表面的光化学反应。考虑到等离子体的这一方面,我们评估了 Ag-TiO2(B)-C3N4 和 Au-TiO2(B)-C3N4 异质结构在降解罗丹明 B(RhB)和苯酚中的可见光光催化性能。异质结构中等离子体热电子注入和界面电荷转移的协同效应导致 RhB(苯酚)的光分解速率比 TiO2(B) 和 C3N4 提高 6-9 倍。时间分辨光致发光研究显示通过异质结构的集成网络进行快速电荷转移。光电流在 470 nm、510 nm 和 575 nm 处测量,靠近 Ag 和 Au 的等离子体激发以及在白光照射(400-800 nm)下。在接近单色等离激元激发的照明下,等离子系统显示光电流比裸 TiO2(B) 增强 6 倍以上。白光照射产生的总光电流比等离子体激发下的强 2 倍。增加是由于 Ti3+ 激发、热电子注入和电荷从 TiO2(B) 转移到 C3N4 的贡献。我们建议 TiO2(B) 中的 Ti3+ 状态为从金属到半导体的直接热电子转移提供通道,促进电荷分离以参与光催化。增加是由于 Ti3+ 激发、热电子注入和电荷从 TiO2(B) 转移到 C3N4 的贡献。我们建议 TiO2(B) 中的 Ti3+ 状态为从金属到半导体的直接热电子转移提供通道,促进电荷分离以参与光催化。增加是由于 Ti3+ 激发、热电子注入和电荷从 TiO2(B) 转移到 C3N4 的贡献。我们建议 TiO2(B) 中的 Ti3+ 状态为从金属到半导体的直接热电子转移提供通道,促进电荷分离以参与光催化。
更新日期:2019-10-01
中文翻译:
用Ag-TiO2(B)和Au-TiO2(B)纳米棒装饰的g-C3N4纳米片诱导等离子体热电子注入诱导优异可见光光催化的证据
摘要 表面等离子体衰变产生的热电子可以有效地用于驱动半导体表面的光化学反应。考虑到等离子体的这一方面,我们评估了 Ag-TiO2(B)-C3N4 和 Au-TiO2(B)-C3N4 异质结构在降解罗丹明 B(RhB)和苯酚中的可见光光催化性能。异质结构中等离子体热电子注入和界面电荷转移的协同效应导致 RhB(苯酚)的光分解速率比 TiO2(B) 和 C3N4 提高 6-9 倍。时间分辨光致发光研究显示通过异质结构的集成网络进行快速电荷转移。光电流在 470 nm、510 nm 和 575 nm 处测量,靠近 Ag 和 Au 的等离子体激发以及在白光照射(400-800 nm)下。在接近单色等离激元激发的照明下,等离子系统显示光电流比裸 TiO2(B) 增强 6 倍以上。白光照射产生的总光电流比等离子体激发下的强 2 倍。增加是由于 Ti3+ 激发、热电子注入和电荷从 TiO2(B) 转移到 C3N4 的贡献。我们建议 TiO2(B) 中的 Ti3+ 状态为从金属到半导体的直接热电子转移提供通道,促进电荷分离以参与光催化。增加是由于 Ti3+ 激发、热电子注入和电荷从 TiO2(B) 转移到 C3N4 的贡献。我们建议 TiO2(B) 中的 Ti3+ 状态为从金属到半导体的直接热电子转移提供通道,促进电荷分离以参与光催化。增加是由于 Ti3+ 激发、热电子注入和电荷从 TiO2(B) 转移到 C3N4 的贡献。我们建议 TiO2(B) 中的 Ti3+ 状态为从金属到半导体的直接热电子转移提供通道,促进电荷分离以参与光催化。