当前位置: X-MOL 学术J. Chem. Educ. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Rumford’s Experimental Challenge to Caloric Theory: “Big Science” 18th-Century Style with Important Results for Chemistry and Physics
Journal of Chemical Education ( IF 2.5 ) Pub Date : 2019-07-17 00:00:00 , DOI: 10.1021/acs.jchemed.9b00039
Frederic E. Schubert 1
Affiliation  

The cannon boring experiment of Count Rumford, where eight kilograms of water were boiled by metal on metal friction, is investigated. Consideration of this dramatic demonstration can enrich classroom discussions of calorimetry, units of measure, elements, and thermodynamics. A section pertaining to use of the article in the classroom appears after the experiment is discussed. The cannon work was one of the Count’s many efforts to understand heat and discredit the then solidly entrenched belief that heat was an element, caloric. Joule lauded Rumford’s work and mined his data decades later for comparison with his own on the mechanical equivalent of heat. The discussion is laid out in the pattern familiar to students of a laboratory experiment and adds in commentary and context when pertinent. Further support for Joule’s work is found in the Count’s data. Also mentioned are a number of other discoveries by the Count attacking the caloric theory and thereby supporting Joule in his efforts to establish that a mechanical equivalent of heat even existed. The development of the kinetic theory of gases in the mid-19th century gave a firm grounding to the early controversial idea of the Count that heat is particle motion. Further, it allowed a formal derivation of another early idea, Avogadro’s hypothesis. The Count’s earnest question “What is heat?” echoes across the centuries and still gives rise to interesting and worthwhile classroom discussions.

中文翻译:

拉姆福德(Rumford)对热量理论的实验挑战:18世纪的“大科学”风格,对化学和物理具有重要意义

对拉姆福德伯爵的大炮钻孔实验进行了研究,该实验通过金属在金属摩擦下煮沸了8公斤水。考虑这一生动的演示可以丰富课堂讨论的量热法,度量单位,元素和热力学。在讨论了实验之后,出现了有关在教室中使用该文章的部分。加农炮的工作是伯爵了解热度并抹黑当时坚信热度是热量的元素的众多努力之一。焦耳赞扬拉姆福德的工作,并在数十年后挖掘了他的数据,以便与他在机械热当量上的数据进行比较。讨论以实验室实验的学生熟悉的模式进行,并在相关时添加注释和上下文。伯爵的数据为焦耳的工作提供了进一步的支持。伯爵还提出了许多其他发现,这些发现攻击了热学理论,从而支持了焦耳的努力,以证明甚至存在机械等效的热量。气体动力学理论在19世纪中叶的发展为Count(热是粒子运动)这一有争议的思想奠定了坚实的基础。此外,它允许正式衍生出另一个早期想法,即阿伏伽德罗的假设。伯爵认真的问题“什么是热?” 回音跨越了几个世纪,仍然引起了有趣而有价值的课堂讨论。伯爵还提出了许多其他发现,这些发现攻击了热学理论,从而支持了焦耳的努力,以证明甚至存在机械等效的热量。气体动力学理论在19世纪中叶的发展为Count(热是粒子运动)这一有争议的思想奠定了坚实的基础。此外,它允许正式衍生出另一个早期想法,即阿伏伽德罗的假设。伯爵认真的问题“什么是热?” 回音跨越了几个世纪,仍然引起了有趣而有价值的课堂讨论。伯爵还提出了许多其他发现,这些发现攻击了热学理论,从而支持了焦耳的努力,以证明甚至存在机械等效的热量。气体动力学理论在19世纪中叶的发展为Count(热是粒子运动)这一有争议的思想奠定了坚实的基础。此外,它允许正式衍生出另一个早期想法,即阿伏伽德罗的假设。伯爵认真问“什么是热量?” 回音跨越了几个世纪,仍然引起了有趣而有价值的课堂讨论。阿伏加德罗的假设。伯爵认真问“什么是热量?” 回音跨越了几个世纪,仍然引起了有趣而有价值的课堂讨论。阿伏加德罗的假设。伯爵认真的问题“什么是热?” 回音跨越了几个世纪,仍然引起了有趣而有价值的课堂讨论。
更新日期:2019-07-17
down
wechat
bug