当前位置: X-MOL 学术Chem. Eur. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
HFIP-Functionalized Co3 O4 Micro-Nano-Octahedra/rGO as a Double-Layer Sensing Material for Chemical Warfare Agents.
Chemistry - A European Journal ( IF 3.9 ) Pub Date : 2019-08-13 , DOI: 10.1002/chem.201901435
Khaled Tawfik Alali 1, 2 , Jingyuan Liu 1 , Rongrong Chen 1 , Qi Liu 1 , Hongsen Zhang 1 , Jundong Li 3 , Jindi Hou 3 , Rumin Li 1 , Jun Wang 1, 4
Affiliation  

Semiconductor metal oxides (SMO)-based gas-sensing materials suffer from insufficient detection of a specific target gas. Reliable selectivity, high sensitivity, and rapid response-recovery times under various working conditions are the main requirements for optimal gas sensors. Chemical warfare agents (CWA) such as sarin are fatal inhibitors of acetylcholinesterase in the nerve system. So, sensing materials with high sensitivity and selectivity toward CWA are urgently needed. Herein, micro-nano octahedral Co3 O4 functionalized with hexafluoroisopropanol (HFIP) were deposited on a layer of reduced graphene oxide (rGO) as a double-layer sensing materials. The Co3 O4 micro-nano octahedra were synthesized by direct growth from electrospun fiber templates calcined in ambient air. The double-layer rGO/Co3 O4 -HFIP sensing materials presented high selectivity toward DMMP (sarin agent simulant, dimethyl methyl phosphonate) versus rGO/Co3 O4 and Co3 O4 sensors after the exposure to various gases owing to hydrogen bonding between the DMMP molecules and Co3 O4 -HFIP. The rGO/Co3 O4 -HFIP sensors showed high stability with a response signal around 11.8 toward 0.5 ppm DMMP at 125 °C, and more than 75 % of the initial response was maintained under a saturated humid environment (85 % relative humidity). These results prove that these double-layer inorganic-organic composite sensing materials are excellent candidates to serve as optimal gas-sensing materials.

中文翻译:

HFIP功能化的Co3 O4微纳米八面体/ rGO,用作化学战剂的双层传感材料。

基于半导体金属氧化物(SMO)的气敏材料饱受特定目标气体检测不足的困扰。最佳的气体传感器的主要要求是在各种工作条件下可靠的选择性,高灵敏度和快速的响应恢复时间。沙林等化学战剂(CWA)是神经系统中乙酰胆碱酯酶的致命抑制剂。因此,迫切需要对CWA具有高灵敏度和选择性的传感材料。在此,将用六氟异丙醇(HFIP)功能化的微纳米八面体Co3 O4沉积在一层还原的氧化石墨烯(rGO)上作为双层传感材料。通过在环境空气中煅烧的电纺纤维模板直接生长,合成了Co3 O4微纳米八面体。双层rGO / Co3 O4 -HFIP感测材料由于DMMP分子与金属间的氢键作用而暴露于各种气体后,与rGO / Co3 O4和Co3 O4传感器相比,对DMMP(沙林剂模拟物,磷酸二甲酯)具有较高的选择性。 Co 3 O 4 -HFIP。rGO / Co3 O4-HFIP传感器显示出高稳定性,在125°C下对0.5 ppm DMMP的响应信号约为11.8,并且在饱和潮湿环境(相对湿度为85%)下保持了超过75%的初始响应。这些结果证明,这些双层无机-有机复合感测材料是用作最佳气体感测材料的极好的候选者。由于DMMP分子和Co3 O4-HFIP之间存在氢键,因此在暴露于各种气体后,对rGO / Co3 O4和Co3 O4传感器进行了对比。rGO / Co3 O4-HFIP传感器显示出高稳定性,在125°C下对0.5 ppm DMMP的响应信号约为11.8,并且在饱和潮湿环境(相对湿度为85%)下保持了超过75%的初始响应。这些结果证明,这些双层无机-有机复合感测材料是用作最佳气体感测材料的极好的候选者。由于DMMP分子与Co3 O4-HFIP之间存在氢键作用,因此在暴露于各种气体后与rGO / Co3 O4和Co3 O4传感器进行对比。rGO / Co3 O4-HFIP传感器显示出高稳定性,在125°C下对0.5 ppm DMMP的响应信号约为11.8,并且在饱和潮湿环境(相对湿度为85%)下保持了超过75%的初始响应。这些结果证明,这些双层无机-有机复合感测材料是用作最佳气体感测材料的极好的候选者。
更新日期:2019-08-13
down
wechat
bug