当前位置:
X-MOL 学术
›
Biosens. Bioelectron.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Rhinophore bio-inspired stretchable and programmable electrochemical sensor.
Biosensors and Bioelectronics ( IF 10.7 ) Pub Date : 2019-07-16 , DOI: 10.1016/j.bios.2019.111519 Shuqi Wang 1 , Chunyan Qu 1 , Lin Liu 2 , Lianhui Li 1 , Tie Li 1 , Sujie Qin 2 , Ting Zhang 1
Biosensors and Bioelectronics ( IF 10.7 ) Pub Date : 2019-07-16 , DOI: 10.1016/j.bios.2019.111519 Shuqi Wang 1 , Chunyan Qu 1 , Lin Liu 2 , Lianhui Li 1 , Tie Li 1 , Sujie Qin 2 , Ting Zhang 1
Affiliation
Rhinophore, a bio-chemical sensory organ with soft and stretchable/retractable features in many marine molluscs species, exhibits tunable chemosensory abilities in terms of far/near-field chemical detection and molecules' source orientation. However, existing artificial bio-chemical sensors cannot provide tunable modality sensing. Inspired by the anatomical units (folded sensory epithelium) and the functions of a rhinophore, this work introduces a stretchable electrochemical sensor that offers a programmable electro-catalytic performance towards glucose based on the fold/unfold regulation of the gold nanomembrane on an elastic fiber. Geometrical design rationale and covalent bonding strategy are used to realize the robust mechanical and electrical stability of this stretchable bionic sensor. Electrochemical tests demonstrated that the sensitivities of the as-prepared bionic sensor exhibit a linear relationship with its strain states from 0% to 150%. Bio-inspired sensory functions are tested by regulating the strain of the bionic sensor. The sensor achieves a sensitivity of 195.4 μA mM-1 in a low glucose concentration range of 8-206 μM at 150% strain for potentially far-field chemical detection, and a sensitivity of 14.2 μA mM-1 in a high concentration range of 10-100 mM at 0% strain for near-field chemical detection. Moreover, the bionic sensor performs the detection while extending its length can largely enhance the response signal, which is used to distinguish the molecules' source direction. This proposed bionic sensor can be useful in wearable devices, robotics and bionics applications which require diverse modality sensing and smart chemical tracking system.
中文翻译:
犀牛生物启发的可伸缩可编程电化学传感器。
犀牛是一种生物化学的感觉器官,在许多海洋软体动物物种中具有柔软和可伸缩/可伸缩的特征,在远/近场化学检测和分子的来源方向方面显示出可调节的化学感觉能力。但是,现有的人工生化传感器无法提供可调模态传感。受解剖学单元(折叠的感觉上皮)和犀牛功能的启发,这项工作引入了一种可伸缩的电化学传感器,该传感器基于弹性纤维上金纳米膜的折叠/展开调节,提供了对葡萄糖的可编程电催化性能。几何设计原理和共价键合策略用于实现此可拉伸仿生传感器的强大机械和电稳定性。电化学测试表明,所制备的仿生传感器的灵敏度与其应变状态从0%到150%呈线性关系。通过调节仿生传感器的应变来测试生物启发的感觉功能。该传感器可在150%应变下在8-206μM的低葡萄糖浓度范围内实现195.4μAmM-1的灵敏度,可用于潜在的远场化学检测,在10的高浓度范围内可实现14.2μAmM-1的灵敏度在0%应变下为-100 mM,用于近场化学检测。此外,仿生传感器在执行检测的同时扩展其长度可以大大增强响应信号,该信号用于区分分子的源方向。拟议中的仿生传感器可用于可穿戴设备,
更新日期:2019-07-16
中文翻译:
犀牛生物启发的可伸缩可编程电化学传感器。
犀牛是一种生物化学的感觉器官,在许多海洋软体动物物种中具有柔软和可伸缩/可伸缩的特征,在远/近场化学检测和分子的来源方向方面显示出可调节的化学感觉能力。但是,现有的人工生化传感器无法提供可调模态传感。受解剖学单元(折叠的感觉上皮)和犀牛功能的启发,这项工作引入了一种可伸缩的电化学传感器,该传感器基于弹性纤维上金纳米膜的折叠/展开调节,提供了对葡萄糖的可编程电催化性能。几何设计原理和共价键合策略用于实现此可拉伸仿生传感器的强大机械和电稳定性。电化学测试表明,所制备的仿生传感器的灵敏度与其应变状态从0%到150%呈线性关系。通过调节仿生传感器的应变来测试生物启发的感觉功能。该传感器可在150%应变下在8-206μM的低葡萄糖浓度范围内实现195.4μAmM-1的灵敏度,可用于潜在的远场化学检测,在10的高浓度范围内可实现14.2μAmM-1的灵敏度在0%应变下为-100 mM,用于近场化学检测。此外,仿生传感器在执行检测的同时扩展其长度可以大大增强响应信号,该信号用于区分分子的源方向。拟议中的仿生传感器可用于可穿戴设备,