当前位置:
X-MOL 学术
›
Adv. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Ge‐Doped ZnSb/β‐Zn4Sb3 Nanocomposites with High Thermoelectric Performance
Advanced Materials Interfaces ( IF 4.3 ) Pub Date : 2019-07-10 , DOI: 10.1002/admi.201900467 Ahmad Ostovari Moghaddam 1 , Ali Shokuhfar 1 , Yu Zhang 2 , Ting Zhang 3 , Doris Cadavid 2, 4 , Jordi Arbiol 3, 5 , Andreu Cabot 2, 5
Advanced Materials Interfaces ( IF 4.3 ) Pub Date : 2019-07-10 , DOI: 10.1002/admi.201900467 Ahmad Ostovari Moghaddam 1 , Ali Shokuhfar 1 , Yu Zhang 2 , Ting Zhang 3 , Doris Cadavid 2, 4 , Jordi Arbiol 3, 5 , Andreu Cabot 2, 5
Affiliation
ZnSb/β‐Zn4Sb3 nanocomposites are produced from Zn1.1−xGexSb mixtures using a two‐step process. First, proper amounts of the three elements are mixed, melted, and reacted at 800 K. During this process, the nonstoichiometric mixture is crystallized in a combination of ZnSb and β‐Zn4Sb3 phases. Then, the material is ball milled and subsequently hot pressed. Through this process, a dense ZnSb/β‐Zn4Sb3 composite, consisting of β‐Zn4Sb3 nanoinclusions embedded within a ZnSb matrix, is formed. The particular phase distribution of the final ZnSb/β‐Zn4Sb3 composites is a consequence of the harder and more brittle nature of ZnSb than Zn4Sb3, which translates into a stronger reduction of the size of the ZnSb crystal domains during ball milling. This small particle size and the high temperature generated during ball milling result in the melting of the ZnSb phase and the posterior crystallization of the two phases in a ZnSb/β‐Zn4Sb3 matrix/nanoinclusion‐type phase distribution. This particular phase distribution and the presence of Ge result in excellent thermoelectric performances, with power factors up to 1.5 mW m−1 K−2, lattice thermal conductivities down to 0.74 W m−1 K−1, and a thermoelectric figures of merit, ZT, up to 1.2 at 650 K, which is among the highest ZT values reported for ZnSb.
中文翻译:
Ge掺杂的ZnSb /β-Zn4Sb3纳米复合材料具有较高的热电性能
ZnSb /β-Zn系4的Sb 3纳米复合材料选自Zn产生1.1- X葛X使用两步骤处理Sb混合物。首先,这三个元件的适当的量混合,熔融,并在800 K.反应在此过程中,非化学计量的混合物在ZnSb和β-Zn系的组合结晶4 Sb的3个阶段。然后,将材料进行球磨,然后进行热压。通过该处理,致密ZnSb /β-Zn系4的Sb 3复合材料,由β-Zn系的4 Sb的3个纳米夹杂嵌入ZnSb基质内,在形成。最终ZnSb的特定相位分布/β-Zn系4Sb 3复合材料是ZnSb比Zn 4 Sb 3更硬,更脆的特性的结果,这意味着在球磨过程中ZnSb晶畴尺寸的减小更强。这种小的颗粒尺寸和在ZnSb相的熔点和所述两个相在ZnSb /β-Zn系后在结晶过程中球磨结果产生的高温4的Sb 3矩阵/ nanoinclusion型相位分布。这种特定的相分布和Ge的存在导致出色的热电性能,功率因数高达1.5 mW m -1 K -2,晶格热导率低至0.74 W m -1 K-1,以及在650 K下高达1.2的热电性能因数ZT,这是ZnSb报道的最高ZT值之一。
更新日期:2019-07-10
中文翻译:
Ge掺杂的ZnSb /β-Zn4Sb3纳米复合材料具有较高的热电性能
ZnSb /β-Zn系4的Sb 3纳米复合材料选自Zn产生1.1- X葛X使用两步骤处理Sb混合物。首先,这三个元件的适当的量混合,熔融,并在800 K.反应在此过程中,非化学计量的混合物在ZnSb和β-Zn系的组合结晶4 Sb的3个阶段。然后,将材料进行球磨,然后进行热压。通过该处理,致密ZnSb /β-Zn系4的Sb 3复合材料,由β-Zn系的4 Sb的3个纳米夹杂嵌入ZnSb基质内,在形成。最终ZnSb的特定相位分布/β-Zn系4Sb 3复合材料是ZnSb比Zn 4 Sb 3更硬,更脆的特性的结果,这意味着在球磨过程中ZnSb晶畴尺寸的减小更强。这种小的颗粒尺寸和在ZnSb相的熔点和所述两个相在ZnSb /β-Zn系后在结晶过程中球磨结果产生的高温4的Sb 3矩阵/ nanoinclusion型相位分布。这种特定的相分布和Ge的存在导致出色的热电性能,功率因数高达1.5 mW m -1 K -2,晶格热导率低至0.74 W m -1 K-1,以及在650 K下高达1.2的热电性能因数ZT,这是ZnSb报道的最高ZT值之一。