Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Band engineering at the interface of all-inorganic CsPbI2Br solar cells†
Nanoscale ( IF 5.8 ) Pub Date : 2019-07-09 00:00:00 , DOI: 10.1039/c9nr03638e
Jing Zhuang 1, 2, 3, 4, 5 , Yuanzhi Wei 1, 2, 3, 4, 5 , Yigang Luan 1, 2, 3, 4, 5 , Ningli Chen 1, 2, 3, 4, 5 , Peng Mao 1, 2, 3, 4, 5 , Shaokui Cao 6, 7, 8, 9 , Jizheng Wang 1, 2, 3, 4, 5
Nanoscale ( IF 5.8 ) Pub Date : 2019-07-09 00:00:00 , DOI: 10.1039/c9nr03638e
Jing Zhuang 1, 2, 3, 4, 5 , Yuanzhi Wei 1, 2, 3, 4, 5 , Yigang Luan 1, 2, 3, 4, 5 , Ningli Chen 1, 2, 3, 4, 5 , Peng Mao 1, 2, 3, 4, 5 , Shaokui Cao 6, 7, 8, 9 , Jizheng Wang 1, 2, 3, 4, 5
Affiliation
![]() |
An all-inorganic CsPbI2Br perovskite with excellent phase stability and thermal stability has been considered to be a promising candidate for photovoltaic application. However, low efficiency and high moisture sensitivity hinder its advancement. In this work, we exploit 4-bromobenzylamine hydriodate post-treatment on CsPbI2Br thin films to assist the extraction of holes and to block the flow of electrons to the hole transport layer through band engineering at the CsPbI2Br bulk/surface. We found through depth profile analysis that a small amount of BrBeAI permeates into the CsPbI2Br bulk and mainly locates at the CsPbI2Br grain boundaries. This treatment leads to an improved short-circuit current of CsPbI2Br solar cells and an enhanced efficiency from 13.10% to 14.63%. In addition, the incorporation of the hydrophobic organic component into perovskite films effectively enhances the moisture resistance. This result proves that utilizing organic ammonium salt to improve the performance of the device through band alignment is an effective strategy for all-inorganic perovskite solar cell optimization.
中文翻译:
全无机CsPbI 2 Br太阳能电池界面的能带工程†
具有优异的相稳定性和热稳定性的全无机CsPbI 2 Br钙钛矿被认为是光伏应用的有希望的候选者。但是,低效率和高湿度敏感性阻碍了其发展。在这项工作中,我们利用CsPbI 2 Br薄膜上的氢溴酸4-溴苄胺后处理来协助空穴的提取,并通过CsPbI 2 Br体/表面上的能带工程来阻止电子流向空穴传输层。通过深度剖面分析,我们发现少量的BrBeAl渗透到CsPbI 2 Br的主体中,并且主要位于CsPbI 2 Br的晶界处。这种处理可以改善CsPbI的短路电流2 Br太阳能电池,效率从13.10%提高到14.63%。另外,将疏水性有机组分掺入钙钛矿膜中可有效地增强耐湿性。该结果证明,利用有机铵盐通过能带对准来改善器件性能是用于全无机钙钛矿太阳能电池优化的有效策略。
更新日期:2019-07-09
中文翻译:
![](https://scdn.x-mol.com/jcss/images/paperTranslation.png)
全无机CsPbI 2 Br太阳能电池界面的能带工程†
具有优异的相稳定性和热稳定性的全无机CsPbI 2 Br钙钛矿被认为是光伏应用的有希望的候选者。但是,低效率和高湿度敏感性阻碍了其发展。在这项工作中,我们利用CsPbI 2 Br薄膜上的氢溴酸4-溴苄胺后处理来协助空穴的提取,并通过CsPbI 2 Br体/表面上的能带工程来阻止电子流向空穴传输层。通过深度剖面分析,我们发现少量的BrBeAl渗透到CsPbI 2 Br的主体中,并且主要位于CsPbI 2 Br的晶界处。这种处理可以改善CsPbI的短路电流2 Br太阳能电池,效率从13.10%提高到14.63%。另外,将疏水性有机组分掺入钙钛矿膜中可有效地增强耐湿性。该结果证明,利用有机铵盐通过能带对准来改善器件性能是用于全无机钙钛矿太阳能电池优化的有效策略。