Energy Storage Materials ( IF 18.9 ) Pub Date : 2018-02-23 , DOI: 10.1016/j.ensm.2018.02.015 Yijun Tian , Fei Ding , Hai Zhong , Cheng Liu , Yan-Bing He , Jiaquan Liu , Xingjiang Liu , Qiang Xu
Li7La3Zr2O12 (LLZO) garnet-type oxide has become a promising inorganic electrolyte for solid-state lithium-ion batteries due to its high ionic conductivity and good chemical stability with the lithium metal. However, the poor wettability of LLZO garnet-type oxide with lithium metal and its incompact structure have impeded their extensive applications in solid-state lithium-ion batteries. Herein, Li6.75La3Zr1.75Ta0.25O12 (LLZTO) particles were embedded in the amorphous Li3OCl to form an integrated composite electrolyte (LLZTO-2wt.% Li3OCl) with compact and stable structure at 350 °C, which presents high ionic conductivity (2.27 × 10−4 S cm−1), low interfacial resistance and high electrochemical stability (up to 10 V vs. Li/Li+) at room temperature. The amorphous Li3OCl acting as a binder, filler and bridge promotes the formation of an integrated composite electrolyte and continuous ionic conductive network among LLZTO particles. Furthermore, the Li3OCl with excellent affinity to lithium metal in-situ reacts with the lithium metal to form a stable and dense interfacial layer, which greatly decreases the interfacial resistance between the composite electrolyte and lithium metal (from 1850 to 90 Ω cm2). The interfacial layer allied compact composite electrolyte also effectively suppresses the lithium dendrite growth during lithium plating-striping. The symmetrical Li/LLZTO-2wt.% Li3OCl/Li cell can stably cycle 1000 h without short circuit. The stable specific capacity of solid-state LiFePO4/LLZTO-2wt.% Li3OCl/Li battery is as high as 157.5 mAh g−1 and 85.7 mAh g−1 at 0.05 C and 0.5 C, respectively. Combining the garnet-type electrolyte with amorphous Li3OCl is a promising way to develop the compact garnet-type electrolyte at low temperature for solid-state lithium-ion batteries.
中文翻译:
用于固态锂金属电池的Li 6.75 La 3 Zr 1.75 Ta 0.25 O 12 @非晶态Li 3 OCl复合电解质
Li 7 La 3 Zr 2 O 12(LLZO)石榴石型氧化物由于其高离子电导率和与锂金属的良好化学稳定性,已成为用于固态锂离子电池的有希望的无机电解质。但是,LLZO石榴石型氧化物与锂金属的润湿性差,且其结构紧凑,妨碍了它们在固态锂离子电池中的广泛应用。在此,将Li 6.75 La 3 Zr 1.75 Ta 0.25 O 12(LLZTO)颗粒嵌入无定形Li 3 OCl中以形成集成复合电解质(LLZTO-2wt。%Li 3OCl)在350°C下具有紧凑而稳定的结构,在室温下具有高离子电导率(2.27×10 -4 S cm -1),低界面电阻和高电化学稳定性(相对于Li / Li +高达10 V )温度。充当粘合剂,填料和桥的无定形Li 3 OCl促进了LLZTO颗粒之间集成的复合电解质和连续离子导电网络的形成。此外,对锂金属具有优异亲和力的Li 3 OCl与锂金属反应形成稳定且致密的界面层,从而大大降低了复合电解质与锂金属之间的界面电阻(从1850降至90Ωcm 2)。界面层相关的致密复合电解质还有效地抑制了锂电镀剥离过程中锂枝晶的生长。对称的Li / LLZTO-2wt。%Li 3 OCl / Li电池可稳定循环1000小时而不会发生短路。固态LiFePO 4 /LLZTO-2wt.% Li 3 OCl / Li电池的稳定比容量在0.05 C和0.5 C时分别高达157.5 mAh g -1和85.7 mAh g -1。石榴石型电解质与无定形Li 3 OCl的组合是开发用于固态锂离子电池的低温紧凑型石榴石型电解质的有前途的方法。