当前位置: X-MOL 学术Int. J. Hydrogen Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Phosphorus and sulphur co-doping of g-C3N4 nanotubes with tunable architectures for superior photocatalytic H2 evolution
International Journal of Hydrogen Energy ( IF 8.1 ) Pub Date : 2019-07-05 , DOI: 10.1016/j.ijhydene.2019.06.037
Zhiguo Liu , Xiao Zhang , Zhixiang Jiang , Hsueh-Shih Chen , Ping Yang

Non-metal doping not only optimizes the energy band structure of g-C3N4 to improve the absorption of visible light, but also exacerbates the distortion of lowest and highest unoccupied molecular orbital plane, causing polarization, thereby improving photocatalytic activity. For the first time, S and P are co-introduced into g-C3N4 network to enhance photocatalytic performance and create various tubular morphologies. The ratio of S to P is crucial to control the tubular morphology and property. In the photocatalytic process, the separation of electrons and holes causes by the polarization of the S and P elements and the synergy of the tubular morphology results in new migration paths for photogenerated electrons and holes. Using optimized preparation conditions, g-C3N4 tubes co-doped with S and P (CNSP) reveal very high H2 generation efficiency (163.27 μmol/h), which is two orders of magnitude higher compared to that of pure g-C3N4 and apparent quantum yield is 18.93% at 420 nm. Fast degradation of Rhodamine B by using CNSP occurs within 5 min under visible light irradiation. Because of the reproducible process, the synthetic strategy provides a novel method for controlling the morphology of g-C3N4-based materials with super activity.



中文翻译:

具有可调谐结构的gC 3 N 4纳米管的磷和硫共掺杂,可实现出色的光催化H 2释放

非金属掺杂不仅优化了gC 3 N 4的能带结构以改善可见光的吸收,而且加剧了最低和最高未占据分子轨道平面的畸变,引起极化,从而提高了光催化活性。第一次将S和P共同引入gC 3 N 4网络以增强光催化性能并创建各种管状形态。S与P的比例对于控制管状形态和性能至关重要。在光催化过程中,电子和空穴的分离是由S和P元素的极化引起的,并且管状形态的协同作用导致了光生电子和空穴的新迁移路径。使用优化的制备条件,掺有S和P(CNSP)的gC 3 N 4管显示出非常高的H 2生成效率(163.27μmol/ h),比纯gC 3 N 4高出两个数量级。在420 nm处的表观量子产率为18.93%。在可见光照射下,使用CNSP可以在5分钟内快速降解罗丹明B。由于可重复的过程,合成策略为控制具有超强活性的基于gC 3 N 4的材料的形态提供了一种新颖的方法。

更新日期:2019-07-05
down
wechat
bug