当前位置:
X-MOL 学术
›
Angew. Chem. Int. Ed.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Visible‐Light‐Driven CO2 Reduction by Mesoporous Carbon Nitride Modified with Polymeric Cobalt Phthalocyanine
Angewandte Chemie International Edition ( IF 16.1 ) Pub Date : 2019-07-30 , DOI: 10.1002/anie.201907082 Souvik Roy 1 , Erwin Reisner 1
Angewandte Chemie International Edition ( IF 16.1 ) Pub Date : 2019-07-30 , DOI: 10.1002/anie.201907082 Souvik Roy 1 , Erwin Reisner 1
Affiliation
The integration of molecular catalysts with low‐cost, solid light absorbers presents a promising strategy to construct catalysts for the generation of solar fuels. Here, we report a photocatalyst for CO2 reduction that consists of a polymeric cobalt phthalocyanine catalyst (CoPPc) coupled with mesoporous carbon nitride (mpg‐CNx) as the photosensitizer. This precious‐metal‐free hybrid catalyst selectively converts CO2 to CO in organic solvents under UV/Vis light (AM 1.5G, 100 mW cm−2, λ>300 nm) with a cobalt‐based turnover number of 90 for CO after 60 h. Notably, the photocatalyst retains 60 % CO evolution activity under visible light irradiation (λ>400 nm) and displays moderate water tolerance. The in situ polymerization of the phthalocyanine allows control of catalyst loading and is key for achieving photocatalytic CO2 conversion.
中文翻译:
聚合物钴酞菁改性介孔氮化碳在可见光驱动下还原二氧化碳
分子催化剂与低成本固体光吸收剂的结合为构建用于生产太阳能燃料的催化剂提供了一种有前景的策略。在这里,我们报道了一种用于CO 2还原的光催化剂,该催化剂由聚合物钴酞菁催化剂(CoPPc)和介孔氮化碳(mpg-CN x)作为光敏剂组成。这种不含贵金属的混合催化剂在紫外/可见光(AM 1.5G, 100 mW cm -2 , λ>300 nm)下选择性地将有机溶剂中的CO 2转化为CO ,之后CO的钴基转换数为90 60 小时。值得注意的是,该光催化剂在可见光照射(λ>400 nm)下保留了60%的CO析出活性,并表现出中等的耐水性。酞菁的原位聚合可以控制催化剂负载,并且是实现光催化CO 2转化的关键。
更新日期:2019-07-30
中文翻译:
聚合物钴酞菁改性介孔氮化碳在可见光驱动下还原二氧化碳
分子催化剂与低成本固体光吸收剂的结合为构建用于生产太阳能燃料的催化剂提供了一种有前景的策略。在这里,我们报道了一种用于CO 2还原的光催化剂,该催化剂由聚合物钴酞菁催化剂(CoPPc)和介孔氮化碳(mpg-CN x)作为光敏剂组成。这种不含贵金属的混合催化剂在紫外/可见光(AM 1.5G, 100 mW cm -2 , λ>300 nm)下选择性地将有机溶剂中的CO 2转化为CO ,之后CO的钴基转换数为90 60 小时。值得注意的是,该光催化剂在可见光照射(λ>400 nm)下保留了60%的CO析出活性,并表现出中等的耐水性。酞菁的原位聚合可以控制催化剂负载,并且是实现光催化CO 2转化的关键。