Scientific Reports ( IF 3.8 ) Pub Date : 2019-07-03 , DOI: 10.1038/s41598-019-45349-y Kirill Veselkov 1 , Guadalupe Gonzalez 1, 2 , Shahad Aljifri 1 , Dieter Galea 1 , Reza Mirnezami 1 , Jozef Youssef 3 , Michael Bronstein 2 , Ivan Laponogov 1
Recent data indicate that up-to 30–40% of cancers can be prevented by dietary and lifestyle measures alone. Herein, we introduce a unique network-based machine learning platform to identify putative food-based cancer-beating molecules. These have been identified through their molecular biological network commonality with clinically approved anti-cancer therapies. A machine-learning algorithm of random walks on graphs (operating within the supercomputing DreamLab platform) was used to simulate drug actions on human interactome networks to obtain genome-wide activity profiles of 1962 approved drugs (199 of which were classified as “anti-cancer” with their primary indications). A supervised approach was employed to predict cancer-beating molecules using these ‘learned’ interactome activity profiles. The validated model performance predicted anti-cancer therapeutics with classification accuracy of 84–90%. A comprehensive database of 7962 bioactive molecules within foods was fed into the model, which predicted 110 cancer-beating molecules (defined by anti-cancer drug likeness threshold of >70%) with expected capacity comparable to clinically approved anti-cancer drugs from a variety of chemical classes including flavonoids, terpenoids, and polyphenols. This in turn was used to construct a ‘food map’ with anti-cancer potential of each ingredient defined by the number of cancer-beating molecules found therein. Our analysis underpins the design of next-generation cancer preventative and therapeutic nutrition strategies.
中文翻译:
HyperFoods:机器智能绘制食物中抗癌分子的图谱。
最新数据表明,仅通过饮食和生活方式措施就可以预防多达30%至40%的癌症。在这里,我们介绍了一个独特的基于网络的机器学习平台,以识别假定的基于食物的抗癌分子。这些已通过其分子生物学网络与临床认可的抗癌疗法的共性而得到鉴定。使用图上随机游走的机器学习算法(在超级计算机DreamLab平台上运行)来模拟药物在人类交互组网络上的作用,从而获得1962年批准药物的全基因组活性谱(其中199种被归类为“抗癌” ”及其主要适应症)。采用了一种监督方法,利用这些“学习的”相互作用组的活性谱来预测搏动癌症的分子。经过验证的模型性能可预测抗癌疗法的分类准确度为84–90%。将食物中7962种生物活性分子的综合数据库输入该模型,该数据库预测了110种与癌症搏动的分子(由抗癌药物相似性阈值> 70%定义),其预期容量可与各种临床批准的抗癌药物相媲美。化学类别包括类黄酮,萜类和多酚。反过来,这被用于构建“食物图”,每种食物的抗癌潜力由其中发现的抗癌分子的数量定义。我们的分析为下一代癌症预防和治疗营养策略的设计奠定了基础。将食物中7962种生物活性分子的综合数据库输入该模型,该数据库预测了110种与癌症搏动的分子(由抗癌药物相似性阈值> 70%定义),其预期容量可与各种临床批准的抗癌药物相媲美。化学类别包括类黄酮,萜类和多酚。反过来,这被用于构建“食物图”,每种食物的抗癌潜力由其中发现的抗癌分子的数量定义。我们的分析为下一代癌症预防和治疗营养策略的设计奠定了基础。将食物中7962种生物活性分子的综合数据库输入该模型,该数据库预测了110种与癌症搏动的分子(由抗癌药物相似性阈值> 70%定义),其预期容量可与各种临床批准的抗癌药物相媲美。化学类别包括类黄酮,萜类和多酚。反过来,这被用于构建“食物图”,每种食物的抗癌潜力由其中发现的抗癌分子的数量定义。我们的分析为下一代癌症预防和治疗营养策略的设计奠定了基础。(70%)的预期容量可与包括黄酮类,萜类和多酚在内的多种化学类别的临床批准的抗癌药物相媲美。反过来,这被用于构建“食物图”,每种食物的抗癌潜力由其中发现的抗癌分子的数量定义。我们的分析为下一代癌症预防和治疗营养策略的设计奠定了基础。(70%)的预期容量可与包括黄酮类,萜类和多酚在内的多种化学类别的临床批准的抗癌药物相媲美。反过来,这被用于构建“食物图”,每种食物的抗癌潜力由其中发现的抗癌分子的数量定义。我们的分析为下一代癌症预防和治疗营养策略的设计奠定了基础。