当前位置: X-MOL 学术J. Mater. Chem. A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Porous boron nitride for combined CO2 capture and photoreduction†
Journal of Materials Chemistry A ( IF 10.7 ) Pub Date : 2019-07-03 , DOI: 10.1039/c9ta02793a
Ravi Shankar 1, 2, 3, 4, 5 , Michael Sachs 3, 4, 5, 6, 7 , Laia Francàs 3, 4, 5, 6, 7 , Daphné Lubert-Perquel 3, 4, 8, 9, 10 , Gwilherm Kerherve 3, 4, 9, 10, 11 , Anna Regoutz 3, 4, 9, 10, 11 , Camille Petit 1, 2, 3, 4, 5
Affiliation  

Porous and amorphous materials are typically not employed for photocatalytic purposes, like CO2 photoreduction, as their high number of defects can lead to low charge mobility and favour bulk electron–hole recombination. Yet, with a disordered nature can come porosity, which in turn promotes catalyst/reactant interactions and fast charge transfer to reactants. Here, we demonstrate that moving from h-BN, a well-known crystalline insulator, to amorphous BN, we create a semiconductor, which is able to photoreduce CO2 in the gas/solid phase, under both UV-vis and pure visible light and ambient conditions, without the need for cocatalysts. The material selectively produces CO and maintains its photocatalytic stability over several catalytic cycles. The performance of this un-optimized material is on par with that of TiO2, the benchmark in the field. For the first time, we map out experimentally the band edges of porous BN on the absolute energy scale vs. vacuum to provide fundamental insight into the reaction mechanism. Owing to the chemical and structural tunability of porous BN, these findings highlight the potential of porous BN-based structures for photocatalysis particularly solar fuel production.

中文翻译:

氮化硼多孔,用于CO 2捕集和光还原

多孔和无定形材料通常不用于光催化目的,例如CO 2光还原,因为它们的大量缺陷会导致低电荷迁移率并有利于体电子-空穴复合。然而,具有无序的性质可能会产生孔隙,这反过来又促进了催化剂/反应物的相互作用并快速将电荷转移至反应物。在这里,我们证明了从著名的晶体绝缘体h-BN到非晶BN,我们创建了一种能够光还原CO 2的半导体在气相/固相中,在紫外可见光和纯可见光以及环境条件下均不需要助催化剂。该材料选择性地产生一氧化碳,并在多个催化循环中保持其光催化稳定性。这种未经优化的材料的性能与本领域的基准TiO 2相当。首次,我们在绝对能级真空度之间实验性地绘制了多孔BN的能带边缘,以提供对反应机理的基本了解。由于多孔BN的化学和结构可调性,这些发现突出了基于多孔BN的结构在光催化特别是太阳能燃料生产方面的潜力。
更新日期:2019-10-23
down
wechat
bug