当前位置:
X-MOL 学术
›
ACS Biomater. Sci. Eng.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Smart Microneedle Fabricated with Silk Fibroin Combined Semi-interpenetrating Network Hydrogel for Glucose-Responsive Insulin Delivery
ACS Biomaterials Science & Engineering ( IF 5.4 ) Pub Date : 2019-07-15 , DOI: 10.1021/acsbiomaterials.9b00532 Siyuan Chen 1, 2 , Hiroko Matsumoto 1 , Yuki Moro-oka 1 , Miyako Tanaka 3 , Yuji Miyahara 1 , Takayoshi Suganami 3 , Akira Matsumoto 1, 2
ACS Biomaterials Science & Engineering ( IF 5.4 ) Pub Date : 2019-07-15 , DOI: 10.1021/acsbiomaterials.9b00532 Siyuan Chen 1, 2 , Hiroko Matsumoto 1 , Yuki Moro-oka 1 , Miyako Tanaka 3 , Yuji Miyahara 1 , Takayoshi Suganami 3 , Akira Matsumoto 1, 2
Affiliation
Microneedle (MN) technology, which can transdermally deliver insulin in a noninvasive manner, offers a promising way to replace subcutaneous self-injection for diabetes management. Hydrogel is an attractive candidate for MN fabrication because of its biocompatibility, controllable degradability, and possibility to achieve sustained as well as stimuli-responsive drug delivery. Herein, we report a smart MN composed of a semi-interpenetrating network (semi-IPN) hydrogel prepared by biocompatible silk fibroin (SF) and phenylboronic acid/acrylamide for glucose-responsive insulin delivery. Six fabrication methods were investigated to maintain the glucose sensitivity of the hydrogel while avoiding deformation during fabrication. The optimized method was to fabricate smart MNs using a two-layer strategy, with a needle region formed by the SF combined semi-IPN hydrogel and the base layer fabricated by SF. The hybrid MN autonomously released insulin well-correspondent to the glucose change pattern via the regulation of the skin layer formed on the surface. Furthermore, this hybrid MN retained its original needle shape after 1 week in aqueous system, thus eliminating the safety concerns associated with dissolving MNs and suggesting the possibility for sustained delivery. This nondegradable smart MN is promising to provide on-demand insulin in a long-acting, painless, and convenient way.
中文翻译:
丝素蛋白结合半互穿网络水凝胶制备的智能微针,用于葡萄糖反应性胰岛素输送。
微针(MN)技术可以以非侵入性的方式经皮输送胰岛素,为糖尿病管理中的皮下自我注射提供了一种有希望的替代方法。水凝胶由于其生物相容性,可控的降解性以及实现持续的和刺激响应的药物输送的可能性而成为制造MN的有吸引力的候选者。本文中,我们报告了一种由生物相容性丝素蛋白(SF)和苯基硼酸/丙烯酰胺制备的半互穿网络(semi-IPN)水凝胶组成的智能MN,可用于葡萄糖敏感的胰岛素输送。研究了六种制备方法,以维持水凝胶的葡萄糖敏感性,同时避免在制备过程中变形。优化的方法是使用两层策略来制造智能MN,带有由SF组合的半IPN水凝胶形成的针头区域和由SF制成的基础层。杂合MN通过调节形成在表面上的皮肤层而自主释放与葡萄糖变化模式非常合适的胰岛素。此外,这种混合型MN在水性体系中放置1周后仍保持其原始的针状形状,因此消除了与溶解MN相关的安全隐患,并提出了持续递送的可能性。这种不可降解的智能MN有望以长效,无痛且方便的方式提供按需胰岛素。这种混合型MN在水性系统中放置1周后仍保持其原始的针状形状,因此消除了与溶解MN相关的安全隐患,并暗示了持续递送的可能性。这种不可降解的智能MN有望以长效,无痛且方便的方式提供按需胰岛素。这种混合型MN在水性系统中放置1周后仍保持其原始的针状形状,因此消除了与溶解MN相关的安全隐患,并暗示了持续递送的可能性。这种不可降解的智能MN有望以长效,无痛且方便的方式提供按需胰岛素。
更新日期:2019-07-16
中文翻译:
丝素蛋白结合半互穿网络水凝胶制备的智能微针,用于葡萄糖反应性胰岛素输送。
微针(MN)技术可以以非侵入性的方式经皮输送胰岛素,为糖尿病管理中的皮下自我注射提供了一种有希望的替代方法。水凝胶由于其生物相容性,可控的降解性以及实现持续的和刺激响应的药物输送的可能性而成为制造MN的有吸引力的候选者。本文中,我们报告了一种由生物相容性丝素蛋白(SF)和苯基硼酸/丙烯酰胺制备的半互穿网络(semi-IPN)水凝胶组成的智能MN,可用于葡萄糖敏感的胰岛素输送。研究了六种制备方法,以维持水凝胶的葡萄糖敏感性,同时避免在制备过程中变形。优化的方法是使用两层策略来制造智能MN,带有由SF组合的半IPN水凝胶形成的针头区域和由SF制成的基础层。杂合MN通过调节形成在表面上的皮肤层而自主释放与葡萄糖变化模式非常合适的胰岛素。此外,这种混合型MN在水性体系中放置1周后仍保持其原始的针状形状,因此消除了与溶解MN相关的安全隐患,并提出了持续递送的可能性。这种不可降解的智能MN有望以长效,无痛且方便的方式提供按需胰岛素。这种混合型MN在水性系统中放置1周后仍保持其原始的针状形状,因此消除了与溶解MN相关的安全隐患,并暗示了持续递送的可能性。这种不可降解的智能MN有望以长效,无痛且方便的方式提供按需胰岛素。这种混合型MN在水性系统中放置1周后仍保持其原始的针状形状,因此消除了与溶解MN相关的安全隐患,并暗示了持续递送的可能性。这种不可降解的智能MN有望以长效,无痛且方便的方式提供按需胰岛素。