当前位置:
X-MOL 学术
›
ACS Catal.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Activity and Selectivity Trends in Electrocatalytic Nitrate Reduction on Transition Metals
ACS Catalysis ( IF 11.3 ) Pub Date : 2019-06-25 00:00:00 , DOI: 10.1021/acscatal.9b02179 Jin-Xun Liu 1 , Danielle Richards 1 , Nirala Singh 1 , Bryan R. Goldsmith 1
ACS Catalysis ( IF 11.3 ) Pub Date : 2019-06-25 00:00:00 , DOI: 10.1021/acscatal.9b02179 Jin-Xun Liu 1 , Danielle Richards 1 , Nirala Singh 1 , Bryan R. Goldsmith 1
Affiliation
Electrocatalytic reduction is a promising approach to remediate nitrate (NO3–), one of the world’s most widespread water pollutants. In the present work, we elucidate activity and selectivity trends of transition metals for electrocatalytic nitrate reduction to benign or value-added products such as N2 and NH3. Using density functional theory (DFT) calculations, we find that the adsorption strengths of oxygen and nitrogen atoms act as descriptors for the overall activity and selectivity of nitrate reduction electrocatalysts. Nitrate reduction rates, volcano plots, surface species coverages, and the degree of rate control were predicted for transition metal electrocatalysts as a function of applied potential using DFT-based microkinetic modeling. Our microkinetic model rationalizes a number of experimental observations including the activity trends of pure metals and our in situ X-ray absorption spectroscopy measurements of competitive adsorption between hydrogen and nitrate on Pt/C. We also predict that Fe3Ru, Fe3Ni, Fe3Cu, and Pt3Ru are promising catalysts for nitrate electroreduction toward N2 with relatively high activity and selectivity. Ultimately, this work gives insight into nitrate reduction on transition metal surfaces and can guide the design of improved electrocatalysts for nitrate remediation.
中文翻译:
过渡金属上电催化硝酸盐还原的活性和选择性趋势
电催化还原是一个有前途的方法来补救硝酸盐(NO 3 - ),是世界上最广泛的水污染物之一。在目前的工作中,我们阐明了过渡金属用于电催化硝酸盐还原为良性或增值产品(例如N 2和NH 3)的活性和选择性趋势。使用密度泛函理论(DFT)计算,我们发现氧和氮原子的吸附强度充当了硝酸盐还原电催化剂整体活性和选择性的描述符。使用基于DFT的微动力学模型,预测了过渡金属电催化剂的硝酸盐还原速率,火山图,表面物种覆盖率和速率控制程度,取决于施加电势。我们的微动力学模型合理化了许多实验观察结果,包括纯金属的活性趋势以及我们原位X射线吸收光谱法测量的氢和硝酸盐在Pt / C上的竞争性吸附。我们还预测到Fe 3 Ru,Fe 3 Ni,Fe 3 Cu和Pt 3Ru是有希望的具有相对高的活性和选择性的用于硝酸盐向N 2电解还原的催化剂。最终,这项工作使人们对过渡金属表面的硝酸盐还原有了深入的了解,并可以指导用于硝酸盐修复的改进电催化剂的设计。
更新日期:2019-06-25
中文翻译:
过渡金属上电催化硝酸盐还原的活性和选择性趋势
电催化还原是一个有前途的方法来补救硝酸盐(NO 3 - ),是世界上最广泛的水污染物之一。在目前的工作中,我们阐明了过渡金属用于电催化硝酸盐还原为良性或增值产品(例如N 2和NH 3)的活性和选择性趋势。使用密度泛函理论(DFT)计算,我们发现氧和氮原子的吸附强度充当了硝酸盐还原电催化剂整体活性和选择性的描述符。使用基于DFT的微动力学模型,预测了过渡金属电催化剂的硝酸盐还原速率,火山图,表面物种覆盖率和速率控制程度,取决于施加电势。我们的微动力学模型合理化了许多实验观察结果,包括纯金属的活性趋势以及我们原位X射线吸收光谱法测量的氢和硝酸盐在Pt / C上的竞争性吸附。我们还预测到Fe 3 Ru,Fe 3 Ni,Fe 3 Cu和Pt 3Ru是有希望的具有相对高的活性和选择性的用于硝酸盐向N 2电解还原的催化剂。最终,这项工作使人们对过渡金属表面的硝酸盐还原有了深入的了解,并可以指导用于硝酸盐修复的改进电催化剂的设计。