当前位置: X-MOL 学术ACS Catal. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Oligothiophene Synthesis by a General C-H Activation Mechanism: Electrophilic Concerted Metalation-Deprotonation (eCMD).
ACS Catalysis ( IF 11.3 ) Pub Date : 2019-06-24 00:00:00 , DOI: 10.1021/acscatal.9b01195
Long Wang 1 , Brad P Carrow 1
Affiliation  

Oxidative C–H/C–H coupling is a promising synthetic route for the streamlined construction of conjugated organic materials for optoelectronic applications. Broader adoption of these methods is nevertheless hindered by the need for catalysts that excel in forging core semiconductor motifs, such as ubiquitous oligothiophenes, with high efficiency in the absence of metal reagents. We report a (thioether)Pd-catalyzed oxidative coupling method for the rapid assembly of both privileged oligothiophenes and challenging hindered cases, even at low catalyst loading under Ag- and Cu-free conditions. A combined experimental and computational mechanistic study was undertaken to understand how a simple thioether ligand, MeS(CH2)3SO3Na, leads to such potent reactivity toward electron-rich substrates. The consensus from these data is that a concerted, base-assisted C–H cleavage transition state is operative, but thioether coordination to Pd is associated with decreased synchronicity (bond formation exceeding bond breaking) versus the “standard” concerted metalation–deprotonation (CMD) model that was formalized by Fagnou in direct arylation reactions. Enhanced positive charge buildup on the substrate results from this perturbation, which rationalizes experimental trends strongly favoring π-basic sites. The term electrophilic CMD (eCMD) is introduced to distinguish this mechanism from the standard model, even though both mechanisms locate in a broad concerted continuum. More O’Ferrall–Jencks analysis further suggests eCMD should be a general mechanism manifested by many metal complexes. A preliminary classification of complexes into those favoring eCMD or standard CMD is proposed, which should be informative for studies toward tunable catalyst-controlled reactivity.

中文翻译:

通过一般的CH活化机理合成低聚噻吩:亲电一致的金属化-去质子化(eCMD)。

氧化CH / CH偶联是用于光电子应用的共轭有机材料的流线型结构的一种有前途的合成途径。然而,由于缺少在不使用金属试剂的情况下高效地锻造核心半导体图案(例如普遍存在的寡噻吩)的催化剂的需求,阻碍了这些方法的广泛采用。我们报告了一种(硫醚)Pd催化的氧化偶联方法,可快速组装特权寡聚噻吩和具有挑战性的受阻情况,即使在无银和无铜条件下的低催化剂负载下也是如此。进行了组合的实验和计算机理研究,以了解简单的硫醚配体MeS(CH 23 SO 3Na,导致对富电子底物的这种强反应性。从这些数据得出的共识是,碱基协同的C–H裂解过渡态是可操作的,但是硫醚与Pd的配位与“标准”协同金属化-去质子化(CMD )同步性降低(键形成超过键断裂)相关。)模型,由Fagnou在直接芳基化反应中进行了形式化处理。这种扰动导致基底上正电荷积聚的增强,这使强烈倾向于π碱性位点的实验趋势合理化。术语CMD(ē引入了CMD)以将这种机制与标准模型区分开,即使这两种机制都位于广泛的一致连续体中。更O'Ferrall-詹克斯分析进一步表明Ë CMD应该是由许多金属配合物表现的通用机制。提出了将络合物初步分类为有利于e CMD或标准CMD的化合物的分类,这对于研究可调节的催化剂控制的反应性应该是有益的。
更新日期:2019-06-24
down
wechat
bug