当前位置: X-MOL 学术Nature › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Structural colour using organized microfibrillation in glassy polymer films
Nature ( IF 50.5 ) Pub Date : 2019-06-01 , DOI: 10.1038/s41586-019-1299-8
Masateru M Ito 1, 2 , Andrew H Gibbons 1, 3 , Detao Qin 1, 2 , Daisuke Yamamoto 1 , Handong Jiang 1, 2 , Daisuke Yamaguchi 1, 2 , Koichiro Tanaka 1, 3 , Easan Sivaniah 1, 2
Affiliation  

The formation of microscopic cavities and microfibrils at stress hotspots in polymers is typically undesirable and is a contributor to material failure. This type of stress crazing is accelerated by solvents that are typically weak enough not to dissolve the polymer substantially, but which permeate and plasticize the polymer to facilitate the cavity and microfibril formation process1–3. Here we show that microfibril and cavity formation in polymer films can be controlled and harnessed using standing-wave optics to design a periodic stress field within the film4. We can then develop the periodic stress field with a weak solvent to create alternating layers of cavity and microfibril-filled polymers, in a process that we call organized stress microfibrillation. These multi-layered porous structures show structural colour across the full visible spectrum, and the colour can be tuned by varying the temperature and solvent conditions under which the films are developed. By further use of standard lithographic and masking tools, the organized stress microfibrillation process becomes an inkless, large-scale colour printing process generating images at resolutions of up to 14,000 dots per inch on a number of flexible and transparent formats5,6. Standing-wave optics can be used to control microfibril and cavity formation in polymer films and the resulting porous layered structures can produce tunable structural colour, enabling inkless ‘printing’ of images.

中文翻译:

在玻璃状聚合物薄膜中使用有组织的微纤化的结构颜色

在聚合物中的应力热点处形成微观空腔和微纤维通常是不希望的,并且是材料失效的一个因素。这种类型的应力龟裂会被溶剂加速,这些溶剂通常很弱,不会充分溶解聚合物,但会渗透和塑化聚合物以促进空腔和微纤维的形成过程 1-3。在这里,我们展示了聚合物薄膜中的微纤维和空腔形成可以使用驻波光学来控制和利用,以设计薄膜内的周期性应力场。然后,我们可以用弱溶剂开发周期性应力场,以创建交替的空腔层和微纤维填充聚合物,在我们称之为有组织应力微纤维化的过程中。这些多层多孔结构在整个可见光谱中显示出结构颜色,并且可以通过改变薄膜显影的温度和溶剂条件来调整颜色。通过进一步使用标准的平版印刷和掩膜工具,有组织的应力微纤化工艺变成了一种无墨、大规模的彩色印刷工艺,可在多种灵活和透明的格式上生成分辨率高达每英寸 14,000 点的图像5、6。驻波光学器件可用于控制聚合物薄膜中的微纤维和空腔形成,由此产生的多孔层状结构可以产生可调的结构颜色,从而实现图像的无墨“打印”。通过进一步使用标准的平版印刷和掩膜工具,有组织的应力微纤化工艺变成了一种无墨、大规模的彩色印刷工艺,可在多种灵活和透明的格式上生成分辨率高达每英寸 14,000 点的图像5、6。驻波光学器件可用于控制聚合物薄膜中的微纤维和空腔形成,由此产生的多孔层状结构可以产生可调的结构颜色,从而实现图像的无墨“打印”。通过进一步使用标准的平版印刷和掩膜工具,有组织的应力微纤化工艺变成了一种无墨、大规模的彩色印刷工艺,可在多种灵活和透明的格式上生成分辨率高达每英寸 14,000 点的图像5、6。驻波光学器件可用于控制聚合物薄膜中的微纤维和空腔形成,由此产生的多孔层状结构可以产生可调的结构颜色,从而实现图像的无墨“打印”。
更新日期:2019-06-01
down
wechat
bug