当前位置:
X-MOL 学术
›
Adv. Funct. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Elastic Properties of 2D Ultrathin Tungsten Nitride Crystals Grown by Chemical Vapor Deposition
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2019-06-13 , DOI: 10.1002/adfm.201902663 Hong Wang 1 , Emil J. Sandoz‐Rosado 2 , Siu Hon Tsang 3 , Jinjun Lin 1 , Minmin Zhu 1 , Govind Mallick 2 , Zheng Liu 4 , Edwin Hang Tong Teo 1
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2019-06-13 , DOI: 10.1002/adfm.201902663 Hong Wang 1 , Emil J. Sandoz‐Rosado 2 , Siu Hon Tsang 3 , Jinjun Lin 1 , Minmin Zhu 1 , Govind Mallick 2 , Zheng Liu 4 , Edwin Hang Tong Teo 1
Affiliation
3D transition metal nitrides are well recognized for their good electrical conductivity, superior mechanical properties, and high chemical stability. Recently, 2D transition metal nitrides have been successfully prepared in the form of nanosheets and show potential application in energy storage. However, the synthesis of highly crystalline and well‐shaped 2D nitrides layers is still in demand for the investigation of their intrinsic physical properties. The present paper reports the growth of ultrathin tungsten nitride crystals on SiO2/Si substrates by a salt‐assisted chemical vapor deposition method. High‐resolution transmission microscopy confirms the as‐grown samples are highly crystalline WN. The stiffness of ultrathin WN is investigated by atomic force microscopy–based nanoindentation with the film suspended on circular holes. The 3D Young's modulus of few‐layer (4.5 nm thick or more) WN is determined to be 3.9 × 102 ± 1.6 × 102 GPa, which is comparable with the best experimental reported values in the 2D family except graphene and hexagonal boron nitride. The synthesis approach presented in this paper offers the possibilities of producing and utilizing other highly crystalline 2D transition‐metal nitride crystals.
中文翻译:
化学气相沉积生长的二维超薄氮化钨晶体的弹性特性
3D过渡金属氮化物以其良好的导电性,优异的机械性能和高化学稳定性而广为人知。近来,已经成功地以纳米片的形式制备了二维过渡金属氮化物,并显示了在能量存储中的潜在应用。但是,仍需要合成高结晶度和形状良好的2D氮化物层来研究其固有物理性质。本文报道了SiO 2上超薄氮化钨晶体的生长/ Si基板采用盐辅助化学气相沉积法。高分辨率透射显微镜确认所生长的样品为高度结晶的WN。超薄WN的刚度是通过基于原子力显微镜的纳米压痕法研究的,该压痕法将薄膜悬浮在圆孔上。几层(4.5 nm厚或更厚)WN的3D杨氏模量确定为3.9×10 2 ±1.6×10 2 GPa,与石墨烯和六方氮化硼除外的2D系列中最佳实验报道值相当。本文介绍的合成方法提供了生产和利用其他高度结晶的2D过渡金属氮化物晶体的可能性。
更新日期:2019-06-13
中文翻译:
化学气相沉积生长的二维超薄氮化钨晶体的弹性特性
3D过渡金属氮化物以其良好的导电性,优异的机械性能和高化学稳定性而广为人知。近来,已经成功地以纳米片的形式制备了二维过渡金属氮化物,并显示了在能量存储中的潜在应用。但是,仍需要合成高结晶度和形状良好的2D氮化物层来研究其固有物理性质。本文报道了SiO 2上超薄氮化钨晶体的生长/ Si基板采用盐辅助化学气相沉积法。高分辨率透射显微镜确认所生长的样品为高度结晶的WN。超薄WN的刚度是通过基于原子力显微镜的纳米压痕法研究的,该压痕法将薄膜悬浮在圆孔上。几层(4.5 nm厚或更厚)WN的3D杨氏模量确定为3.9×10 2 ±1.6×10 2 GPa,与石墨烯和六方氮化硼除外的2D系列中最佳实验报道值相当。本文介绍的合成方法提供了生产和利用其他高度结晶的2D过渡金属氮化物晶体的可能性。