当前位置:
X-MOL 学术
›
J. Phys. Chem. C
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Surface and Subsurface Structures of the Pt–Fe Surface Alloy on Pt(111)
The Journal of Physical Chemistry C ( IF 3.3 ) Pub Date : 2019-07-05 , DOI: 10.1021/acs.jpcc.9b01626 Hao Chen 1, 2 , Rui Wang 3 , Rong Huang 3 , Changbao Zhao 3 , Yangsheng Li 1, 2 , Zhongmiao Gong 3 , Yunxi Yao 4 , Yi Cui 3 , Fan Yang 1 , Xinhe Bao 1
The Journal of Physical Chemistry C ( IF 3.3 ) Pub Date : 2019-07-05 , DOI: 10.1021/acs.jpcc.9b01626 Hao Chen 1, 2 , Rui Wang 3 , Rong Huang 3 , Changbao Zhao 3 , Yangsheng Li 1, 2 , Zhongmiao Gong 3 , Yunxi Yao 4 , Yi Cui 3 , Fan Yang 1 , Xinhe Bao 1
Affiliation
Pt–Fe bimetallic alloys are important model catalysts for a number of catalytic reactions. Combining scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS), we have studied the structures of Pt–Fe surface alloys prepared on Pt(111) under a variety of conditions. Although the surface and subsurface structures of the Pt–Fe surface alloy could be varied with the deposition amount of Fe atoms and the annealing temperature, a characteristic alloy surface with a bright striped pattern could be identified, which consists of a Pt-dominant surface layer with a small percentage of Fe atoms in the form of isolated atoms or clusters in the surface lattice and a subsurface layer with an ordered Pt3Fe alloy structure. The bright stripes observed in STM were surface dislocations caused by stress relaxation owing to the lattice mismatch between the surface and subsurface layers. This characteristic alloy surface could be prepared on Pt(111) by depositing sub-monolayer Fe at ∼460 K to facilitate Fe diffusion in the near-surface region, or annealing multilayer Fe at ∼700 K, to enhance bulk diffusion of Fe atoms. The synthesis of this Pt–Fe alloy surface with well-defined structures could allow for further model catalytic studies.
中文翻译:
Pt(111)上Pt-Fe表面合金的表面和亚表面结构
Pt-Fe双金属合金是许多催化反应的重要模型催化剂。结合扫描隧道显微镜(STM)和X射线光电子能谱(XPS),我们研究了在各种条件下在Pt(111)上制备的Pt-Fe表面合金的结构。尽管Pt-Fe表面合金的表面和亚表面结构会随Fe原子的沉积量和退火温度而变化,但仍可以识别出具有亮条纹的特征合金表面,该表面由Pt为主的表面层组成在表面晶格中有少量的Fe原子以孤立原子或簇的形式存在,并且具有Pt 3有序的地下层铁合金结构。在STM中观察到的亮条纹是由于表面和次表面层之间的晶格失配而引起的应力松弛引起的表面位错。通过在约460 K处沉积亚单层铁以促进Fe在近表面区域中的扩散,或在〜700 K处对多层Fe进行退火以增强Fe原子的扩散,可以在Pt(111)上制备此特征合金表面。这种具有明确结构的Pt-Fe合金表面的合成可以用于进一步的模型催化研究。
更新日期:2019-07-05
中文翻译:
Pt(111)上Pt-Fe表面合金的表面和亚表面结构
Pt-Fe双金属合金是许多催化反应的重要模型催化剂。结合扫描隧道显微镜(STM)和X射线光电子能谱(XPS),我们研究了在各种条件下在Pt(111)上制备的Pt-Fe表面合金的结构。尽管Pt-Fe表面合金的表面和亚表面结构会随Fe原子的沉积量和退火温度而变化,但仍可以识别出具有亮条纹的特征合金表面,该表面由Pt为主的表面层组成在表面晶格中有少量的Fe原子以孤立原子或簇的形式存在,并且具有Pt 3有序的地下层铁合金结构。在STM中观察到的亮条纹是由于表面和次表面层之间的晶格失配而引起的应力松弛引起的表面位错。通过在约460 K处沉积亚单层铁以促进Fe在近表面区域中的扩散,或在〜700 K处对多层Fe进行退火以增强Fe原子的扩散,可以在Pt(111)上制备此特征合金表面。这种具有明确结构的Pt-Fe合金表面的合成可以用于进一步的模型催化研究。