当前位置:
X-MOL 学术
›
J. Appl. Polym. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Network regulation and properties optimization of glycidyl azide polymer‐based materials as a candidate of solid propellant binder via alternating the functionality of propargyl‐terminated polyether
Journal of Applied Polymer Science ( IF 2.7 ) Pub Date : 2019-06-10 , DOI: 10.1002/app.48016 Chun Qi 1 , Gen Tang 2 , Xiang Guo 2 , Changhua Liu 1, 3 , Ai‐min Pang 2 , Lin Gan 1 , Jin Huang 1
Journal of Applied Polymer Science ( IF 2.7 ) Pub Date : 2019-06-10 , DOI: 10.1002/app.48016 Chun Qi 1 , Gen Tang 2 , Xiang Guo 2 , Changhua Liu 1, 3 , Ai‐min Pang 2 , Lin Gan 1 , Jin Huang 1
Affiliation
A kind of glycidyl azide polymer (GAP)‐based composite has been fabricated using propargyl‐terminated ethylene oxide‐tetrahydrofuran copolymer (PPET) with two (p‐) and three (t‐) alkyne functionalities via Huisgen reaction. Independent upon the PPET functionality, both crosslink densities and mechanical properties for two GAP/PPET systems showed a positive‐interrelation changes of initial increase and subsequent decrease with an increase of azide/alkyne molar ratios. At equivalent of azide/alkyne molar ratios, the composites containing t‐PPET with higher alkyne functionality exhibited better mechanical properties, while those with two alkyne functionality presented lower glass transition. Under the regulation of alkyne functionality as 3 and azide/alkyne molar ratio as 3:1, the tensile strength, Young's modulus and breaking elongation could simultaneously reach the maximum values of 1.38 MPa, 4.07 MPa, and 122.5%, which was ascribed to optimal participation of azide/alkyne reaction into network construction. Overall, this study provides an additional optimization route for network‐structured binders in solid propellant system. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 48016.
中文翻译:
通过改变炔丙基封端的聚醚的功能,对基于缩水甘油基叠氮化物聚合物的材料作为固体推进剂的候选材料进行网络调节和性能优化
一种基于缩水甘油基叠氮化物聚合物(GAP)的复合材料,是通过惠斯根反应,使用具有两个(p-)和三个(t-)炔烃官能团的炔丙基端基的环氧乙烷-四氢呋喃共聚物(PPET)制成的。与PPET功能无关,两个GAP / PPET系统的交联密度和机械性能均显示出正相关关系的变化,即随着叠氮化物/炔烃摩尔比的增加,初始增加和随后的减少呈正相关。在叠氮化物/炔烃摩尔比当量的情况下,复合材料含有t-具有较高炔烃官能度的PPET表现出更好的机械性能,而具有两个炔烃官能度的PPET具有较低的玻璃化转变温度。在炔烃官能度为3,叠氮化物/炔烃摩尔比为3:1的调节下,拉伸强度,杨氏模量和断裂伸长率可同时达到最大值1.38 MPa,4.07 MPa和122.5%,这被认为是最佳的。叠氮化物/炔反应参与网络建设。总的来说,这项研究为固体推进剂系统中的网络结构粘合剂提供了另一条优化途径。分级为4 +©2019 Wiley Periodicals,Inc.J.Appl。Polym。科学 2019,136,48016。
更新日期:2019-06-10
中文翻译:
通过改变炔丙基封端的聚醚的功能,对基于缩水甘油基叠氮化物聚合物的材料作为固体推进剂的候选材料进行网络调节和性能优化
一种基于缩水甘油基叠氮化物聚合物(GAP)的复合材料,是通过惠斯根反应,使用具有两个(p-)和三个(t-)炔烃官能团的炔丙基端基的环氧乙烷-四氢呋喃共聚物(PPET)制成的。与PPET功能无关,两个GAP / PPET系统的交联密度和机械性能均显示出正相关关系的变化,即随着叠氮化物/炔烃摩尔比的增加,初始增加和随后的减少呈正相关。在叠氮化物/炔烃摩尔比当量的情况下,复合材料含有t-具有较高炔烃官能度的PPET表现出更好的机械性能,而具有两个炔烃官能度的PPET具有较低的玻璃化转变温度。在炔烃官能度为3,叠氮化物/炔烃摩尔比为3:1的调节下,拉伸强度,杨氏模量和断裂伸长率可同时达到最大值1.38 MPa,4.07 MPa和122.5%,这被认为是最佳的。叠氮化物/炔反应参与网络建设。总的来说,这项研究为固体推进剂系统中的网络结构粘合剂提供了另一条优化途径。分级为4 +©2019 Wiley Periodicals,Inc.J.Appl。Polym。科学 2019,136,48016。