当前位置:
X-MOL 学术
›
J. Phys. Chem. C
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Role of Dissolution Intermediates in Promoting Oxygen Evolution Reaction at RuO2(110) Surface
The Journal of Physical Chemistry C ( IF 3.3 ) Pub Date : 2019-06-19 , DOI: 10.1021/acs.jpcc.9b03418 Konstantin Klyukin , Alexandra Zagalskaya , Vitaly Alexandrov
The Journal of Physical Chemistry C ( IF 3.3 ) Pub Date : 2019-06-19 , DOI: 10.1021/acs.jpcc.9b03418 Konstantin Klyukin , Alexandra Zagalskaya , Vitaly Alexandrov
RuO2 is one of the most active electrocatalysts toward oxygen evolution reaction (OER), but it suffers from rapid dissolution in electrochemical environments. It is also established experimentally that corrosion of metal oxides can, in fact, promote catalytic activity for OER owing to the formation of a surface hydrous amorphous layer. However, the mechanistic interplay between corrosion and OER across metal-oxide catalysts and to what degree these two processes are correlated are still debated. Herein, we employ ab initio molecular dynamics-based blue moon ensemble approach in combination with OER thermodynamic analysis to reveal a clear mechanistic coupling between Ru dissolution and OER at the RuO2(110)/water interface. Specifically, we demonstrate that (i) dynamic transitions between metastable dissolution intermediates greatly affect catalytic activity toward OER, (ii) dissolution and OER processes share common intermediates with OER promoting Ru detachment from the surface, (iii) the lattice oxygen can be involved in the OER, and (iv) the coupling between different OER intermediates formed at the same Ru site of the metastable dissolution state can lower the theoretical overpotential of OER down to 0.2 eV. Collectively, our findings illustrate the critical role of highly reactive metastable dissolution intermediates in facilitating OER and underscore the need for the incorporation of interfacial reaction dynamics to resolve apparent conflicts between theoretically predicted and experimentally measured OER overpotentials.
中文翻译:
溶解中间体在RuO2(110)表面促进氧释放反应中的作用
RuO 2是发生氧释放反应(OER)的最具活性的电催化剂之一,但在电化学环境中会迅速溶解。还通过实验确定,由于形成表面含水非晶层,金属氧化物的腐蚀实际上可以促进OER的催化活性。但是,关于金属氧化物催化剂的腐蚀与OER之间的机理相互作用以及这两个过程之间的相关程度仍存在争议。在本文中,我们采用从头算分子动力学为基础的蓝月亮集成方法与OER热力学分析相结合,以揭示RuO 2上Ru溶解度与OER之间的明确机理耦合。(110)/水接口。具体而言,我们证明(i)亚稳溶解中间体之间的动态转变极大地影响了对OER的催化活性,(ii)溶解和OER过程与OER促进Ru从表面脱离的过程共享相同的中间体,(iii)晶格中的氧可以参与OER,以及(iv)在亚稳溶解状态的相同Ru位形成的不同OER中间体之间的偶联可以将OER的理论过电势降低至0.2 eV。总的来说,我们的发现说明了高反应性的亚稳溶解中间体在促进OER中的关键作用,并强调了需要结合界面反应动力学来解决理论上预测的和实验测量的OER过电位之间的明显矛盾。
更新日期:2019-06-20
中文翻译:
溶解中间体在RuO2(110)表面促进氧释放反应中的作用
RuO 2是发生氧释放反应(OER)的最具活性的电催化剂之一,但在电化学环境中会迅速溶解。还通过实验确定,由于形成表面含水非晶层,金属氧化物的腐蚀实际上可以促进OER的催化活性。但是,关于金属氧化物催化剂的腐蚀与OER之间的机理相互作用以及这两个过程之间的相关程度仍存在争议。在本文中,我们采用从头算分子动力学为基础的蓝月亮集成方法与OER热力学分析相结合,以揭示RuO 2上Ru溶解度与OER之间的明确机理耦合。(110)/水接口。具体而言,我们证明(i)亚稳溶解中间体之间的动态转变极大地影响了对OER的催化活性,(ii)溶解和OER过程与OER促进Ru从表面脱离的过程共享相同的中间体,(iii)晶格中的氧可以参与OER,以及(iv)在亚稳溶解状态的相同Ru位形成的不同OER中间体之间的偶联可以将OER的理论过电势降低至0.2 eV。总的来说,我们的发现说明了高反应性的亚稳溶解中间体在促进OER中的关键作用,并强调了需要结合界面反应动力学来解决理论上预测的和实验测量的OER过电位之间的明显矛盾。