Joule ( IF 38.6 ) Pub Date : 2019-06-05 , DOI: 10.1016/j.joule.2019.05.014 Shijing Sun , Noor T.P. Hartono , Zekun D. Ren , Felipe Oviedo , Antonio M. Buscemi , Mariya Layurova , De Xin Chen , Tofunmi Ogunfunmi , Janak Thapa , Savitha Ramasamy , Charles Settens , Brian L. DeCost , Aaron G. Kusne , Zhe Liu , Siyu I.P. Tian , Ian Marius Peters , Juan-Pablo Correa-Baena , Tonio Buonassisi
Accelerating the experimental cycle for new materials development is vital for addressing the grand energy challenges of the 21st century. We fabricate and characterize 75 unique perovskite-inspired compositions within a 2-month period, with 87% exhibiting band gaps between 1.2 and 2.4 eV, which are of interest for energy-harvesting applications. We utilize a fully connected deep neural network to classify compounds based on experimental X-ray diffraction data into 0D, 2D, and 3D structures, more than 10 times faster than human analysis and with 90% accuracy. We validate our methods using lead-halide perovskites and extend the application to lead-free compositions. The wider synthesis window and faster cycle of learning enables the realization of a multi-site lead-free alloy series, Cs3(Bi1-xSbx)2(I1-xBrx)9. We reveal the non-linear band-gap behavior and transition in dimensionality upon simultaneous alloying on the B-site and X-site of Cs3Bi2I9 with Sb and Br.
中文翻译:
通过高通量合成和机器学习诊断加快钙钛矿启发材料的开发
加快新材料的开发,实验周期是用于寻址21宏伟的能源挑战至关重要ST世纪。我们在2个月内制作并表征了75种独特的钙钛矿启发型组合物,其中87%的带隙介于1.2和2.4 eV之间,这对于能量收集应用很感兴趣。我们利用完全连接的深度神经网络将基于实验X射线衍射数据的化合物分类为0D,2D和3D结构,比人类分析快10倍以上,准确率达90%。我们验证了使用卤化钙钛矿的方法,并将其应用范围扩展到了无铅成分。更大的合成窗口和更快的学习周期,使多位无铅合金系列Cs 3的实现成为可能(Bi 1-x Sb x)2(I 1-x Br x)9。我们揭示了在带Sb和Br的Cs 3 Bi 2 I 9的B位和X位同时合金化时的非线性带隙行为和尺寸跃迁。