当前位置:
X-MOL 学术
›
ACS Catal.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
DFT Mechanistic Investigation into BF3-Catalyzed Alcohol Oxidation by a Hypervalent Iodine(III) Compound
ACS Catalysis ( IF 11.3 ) Pub Date : 2019-06-06 00:00:00 , DOI: 10.1021/acscatal.9b01599 Kaveh Farshadfar 1 , Antony Chipman 2 , Brian F. Yates 2 , Alireza Ariafard 1, 2
ACS Catalysis ( IF 11.3 ) Pub Date : 2019-06-06 00:00:00 , DOI: 10.1021/acscatal.9b01599 Kaveh Farshadfar 1 , Antony Chipman 2 , Brian F. Yates 2 , Alireza Ariafard 1, 2
Affiliation
Density functional theory (DFT) at the SMD/M06-2X/def2-TZVP//SMD/M06-2X/LANL2DZ,6-31G(d) level was employed to explore mechanistic aspects of BF3-catalyzed alcohol oxidation using a hypervalent iodine(III) compound, [ArI(OAc)2], to yield aldehydes/ketones as the final products. The reaction is composed of two main processes: (i) ligand exchange and (ii) the redox reaction. Our study for 1-propanol discovered that ligand exchange is preferentially accelerated if BF3 first coordinates to the alcohol. This coordination increases the acidity of the alcohol hydroxyl proton, resulting in ligand exchange between the iodane and the alcohol proceeding via a concerted interchange associative mechanism with an activation free energy of ∼10 kcal/mol. For the redox process, the calculations rule out the feasibility of the conventional mechanism (alkoxy Cα deprotonation) and introduce a replacement for it. This alternative route commences with α-hydride elimination of the alkoxy group promoted by BF3 coordination, which yields a BF3-stabilized aldehyde/ketone product and the iodane [ArI(OAc)(H)]. The ensuing iodane is extremely reactive toward reductive elimination to give ArI + HOAc in a highly exergonic fashion (ΔG = −62.1 kcal/mol). The reductive elimination reaction is the thermodynamic driving force for the alcohol oxidation to be irreversible. Consistent with the kinetic isotope effect reported experimentally, the α-hydride elimination is calculated to be the rate-determining step with an overall activation free energy of ∼24 kcal/mol.
中文翻译:
DFT机制研究高价碘(III)化合物对BF 3催化的醇氧化
使用SMD / M06-2X / def2-TZVP // SMD / M06-2X / LANL2DZ,6-31G(d)级的密度泛函理论(DFT)来研究高价BF 3催化醇氧化的机理碘(III)化合物[ArI(OAc)2 ],生成醛/酮作为最终产物。该反应由两个主要过程组成:(i)配体交换和(ii)氧化还原反应。我们对1-丙醇的研究发现,如果BF 3可以优先促进配体交换首先要调整酒精度。这种配位增加了醇羟基质子的酸度,导致碘与醇之间的配体交换通过协同的交换缔合机理进行,活化能约为10 kcal / mol。对于氧化还原过程,计算排除常规机构(烷氧基C的可行性α去质子化),并引入一个为它置换。该替代途径以α-氢化物消除由BF 3配位促进的烷氧基开始,产生BF 3稳定的醛/酮产物和碘[ArI(OAc)(H)]。随之而来的碘对还原消除反应具有极强的反应性,从而以高强度的方式赋予ArI + HOAc(ΔG= -62.1kcal / mol)。还原消除反应是使醇氧化不可逆的热力学驱动力。与实验报道的动力学同位素效应一致,计算得出α-氢化物消除是速率确定步骤,总活化自由能约为24 kcal / mol。
更新日期:2019-06-06
中文翻译:
DFT机制研究高价碘(III)化合物对BF 3催化的醇氧化
使用SMD / M06-2X / def2-TZVP // SMD / M06-2X / LANL2DZ,6-31G(d)级的密度泛函理论(DFT)来研究高价BF 3催化醇氧化的机理碘(III)化合物[ArI(OAc)2 ],生成醛/酮作为最终产物。该反应由两个主要过程组成:(i)配体交换和(ii)氧化还原反应。我们对1-丙醇的研究发现,如果BF 3可以优先促进配体交换首先要调整酒精度。这种配位增加了醇羟基质子的酸度,导致碘与醇之间的配体交换通过协同的交换缔合机理进行,活化能约为10 kcal / mol。对于氧化还原过程,计算排除常规机构(烷氧基C的可行性α去质子化),并引入一个为它置换。该替代途径以α-氢化物消除由BF 3配位促进的烷氧基开始,产生BF 3稳定的醛/酮产物和碘[ArI(OAc)(H)]。随之而来的碘对还原消除反应具有极强的反应性,从而以高强度的方式赋予ArI + HOAc(ΔG= -62.1kcal / mol)。还原消除反应是使醇氧化不可逆的热力学驱动力。与实验报道的动力学同位素效应一致,计算得出α-氢化物消除是速率确定步骤,总活化自由能约为24 kcal / mol。