Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Microfluidic-Assisted Engineering of Quasi-Monodisperse pH-Responsive Polymersomes toward Advanced Platforms for the Intracellular Delivery of Hydrophilic Therapeutics.
Langmuir ( IF 3.7 ) Pub Date : 2019-06-02 00:00:00 , DOI: 10.1021/acs.langmuir.9b01009 Lindomar J C Albuquerque 1, 2 , Vladimir Sincari 1 , Alessandro Ja Ger 1 , Rafal Konefa 1 , Jir I Pa Nek 1 , Peter C Ernoch 1 , Ewa Pavlova 1 , Petr S Te Pa Nek 1 , Fernando C Giacomelli 2 , Elie Zer Ja Ger 1
Langmuir ( IF 3.7 ) Pub Date : 2019-06-02 00:00:00 , DOI: 10.1021/acs.langmuir.9b01009 Lindomar J C Albuquerque 1, 2 , Vladimir Sincari 1 , Alessandro Ja Ger 1 , Rafal Konefa 1 , Jir I Pa Nek 1 , Peter C Ernoch 1 , Ewa Pavlova 1 , Petr S Te Pa Nek 1 , Fernando C Giacomelli 2 , Elie Zer Ja Ger 1
Affiliation
The extracellular and subcellular compartments are characterized by specific pH levels that can be modified by pathophysiological states. This scenario encourages the use of environmentally responsive nanomedicines for the treatment of damaged cells. We have engineered doxorubicin (DOX)-loaded pH-responsive polymersomes using poly([N-(2-hydroxypropyl)]methacrylamide)-b-poly[2-(diisopropylamino)ethyl methacrylate] block copolymers (PHPMAm-b-PDPAn). We demonstrate that, by taking advantage of the microfluidic technology, quasi-monodisperse assemblies can be created. This feature is of due relevance because highly uniform nanoparticles commonly exhibit more consistent biodistribution and cellular uptake. We also report that the size of the polymer vesicles can be tuned by playing with the inherent mechanical parameters of the microfluidic protocol. This new knowledge can be used to engineer size-specific nanomedicines for enhanced tumor accumulation if the manufacturing is performed with previous knowledge of tumor characteristics (particularly the degree of vascularity and porosity). The pH-dependent DOX release was further investigated evidencing the ability of polymersome to sustain encapsulated hydrophilic molecules when circulating in physiological environment (pH 7.4). This suggests nonrelevant drug leakage during systemic circulation. On the other hand, polymersome disassembly in slightly acid environments takes place enabling fast DOX release, thereby making the colloidal carriers highly cytotoxic. These features encourage the use of such advanced pH-responsive platforms to target damaged cells while preserving healthy environments during systemic circulation.
中文翻译:
拟单分散pH响应聚合物囊泡向亲水药物的细胞内递送高级平台的微流控辅助工程。
细胞外和亚细胞区室的特征在于可以通过病理生理状态改变的特定pH水平。这种情况鼓励使用对环境敏感的纳米药物来治疗受损细胞。我们使用聚([ N-(2-羟丙基)]甲基丙烯酰胺)-b-聚[甲基丙烯酸2-(二异丙基氨基)乙酯]嵌段共聚物(PHPMA m - b -PDPA n)。我们证明,通过利用微流体技术的优势,可以创建准单分散组件。该特征具有相关性,因为高度均匀的纳米粒子通常表现出更一致的生物分布和细胞摄取。我们还报告说,可以通过玩微流体协议的固有机械参数来调整聚合物囊泡的大小。如果制造过程是在事先了解肿瘤特征(尤其是血管和孔隙度的知识)的基础上进行的,则此新知识可用于工程化尺寸特定的纳米药物,以增强肿瘤的蓄积。进一步研究了pH依赖的DOX释放,证明了当在生理环境(pH 7.4)中循环时,聚合物囊泡维持包封的亲水分子的能力。这表明在全身循环过程中无关药物的泄漏。另一方面,在弱酸性环境中发生了聚合体的分解,使得DOX快速释放,从而使胶体载体具有高度的细胞毒性。这些功能鼓励使用这种先进的pH响应平台来靶向受损细胞,同时在系统循环中保持健康的环境。
更新日期:2019-06-02
中文翻译:
拟单分散pH响应聚合物囊泡向亲水药物的细胞内递送高级平台的微流控辅助工程。
细胞外和亚细胞区室的特征在于可以通过病理生理状态改变的特定pH水平。这种情况鼓励使用对环境敏感的纳米药物来治疗受损细胞。我们使用聚([ N-(2-羟丙基)]甲基丙烯酰胺)-b-聚[甲基丙烯酸2-(二异丙基氨基)乙酯]嵌段共聚物(PHPMA m - b -PDPA n)。我们证明,通过利用微流体技术的优势,可以创建准单分散组件。该特征具有相关性,因为高度均匀的纳米粒子通常表现出更一致的生物分布和细胞摄取。我们还报告说,可以通过玩微流体协议的固有机械参数来调整聚合物囊泡的大小。如果制造过程是在事先了解肿瘤特征(尤其是血管和孔隙度的知识)的基础上进行的,则此新知识可用于工程化尺寸特定的纳米药物,以增强肿瘤的蓄积。进一步研究了pH依赖的DOX释放,证明了当在生理环境(pH 7.4)中循环时,聚合物囊泡维持包封的亲水分子的能力。这表明在全身循环过程中无关药物的泄漏。另一方面,在弱酸性环境中发生了聚合体的分解,使得DOX快速释放,从而使胶体载体具有高度的细胞毒性。这些功能鼓励使用这种先进的pH响应平台来靶向受损细胞,同时在系统循环中保持健康的环境。