Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Continuous Heteroepitaxy of Two-Dimensional Heterostructures Based on Layered Chalcogenides
ACS Nano ( IF 15.8 ) Pub Date : 2019-05-31 00:00:00 , DOI: 10.1021/acsnano.8b07991 Yu Kobayashi 1 , Shoji Yoshida 2 , Mina Maruyama 2 , Hiroyuki Mogi 2 , Kota Murase 2 , Yutaka Maniwa 1 , Osamu Takeuchi 2 , Susumu Okada 2 , Hidemi Shigekawa 2 , Yasumitsu Miyata 1
ACS Nano ( IF 15.8 ) Pub Date : 2019-05-31 00:00:00 , DOI: 10.1021/acsnano.8b07991 Yu Kobayashi 1 , Shoji Yoshida 2 , Mina Maruyama 2 , Hiroyuki Mogi 2 , Kota Murase 2 , Yutaka Maniwa 1 , Osamu Takeuchi 2 , Susumu Okada 2 , Hidemi Shigekawa 2 , Yasumitsu Miyata 1
Affiliation
The in-plane connection and layer-by-layer stacking of atomically thin layered materials are expected to allow the fabrication of two-dimensional (2D) heterostructures with exotic physical properties and future engineering applications. However, it is currently necessary to develop a continuous growth process that allows the assembly of a wide variety of atomic layers without interface degradation, contamination, and/or alloying. Herein, we report the continuous heteroepitaxial growth of 2D multiheterostructures and nanoribbons based on layered transition metal dichalcogenide (TMDC) monolayers, employing metal organic liquid precursors with high supply controllability. This versatile process can avoid air exposure during growth process and enables the formation of in-plane heterostructures with ultraclean atomically sharp and zigzag-edge straight junctions without defects or alloy formation around the interface. For the samples grown directly on graphite, we have investigated the local electronic density of states of atomically sharp heterointerface by scanning tunneling microscopy and spectroscopy, together with first-principles calculations. These results demonstrate an approach to realizing diverse nanostructures such as atomic layer-based quantum wires and superlattices and suggest advanced applications in the fields of electronics and optoelectronics.
中文翻译:
基于层状硫属元素化物的二维异质结构的连续异质外延
原子薄层材料的平面内连接和逐层堆叠有望实现具有异乎寻常的物理特性的二维(2D)异质结构的制造和未来的工程应用。但是,当前有必要开发一种连续生长工艺,该工艺允许组装各种原子层而不会发生界面退化,污染和/或合金化。在这里,我们报告了基于层状过渡金属二卤化硅(TMDC)单层的二维多异质结构和纳米带的连续异质外延生长,采用了具有高供应可控性的金属有机液体前体。这种通用的过程可以避免在生长过程中暴露于空气中,并且可以形成具有超净原子尖锐和锯齿形边缘直结的平面内异质结构,而在界面周围不会形成缺陷或形成合金。对于直接在石墨上生长的样品,我们通过扫描隧道显微镜和光谱学以及第一性原理计算研究了原子锐异质界面态的局部电子密度。这些结果证明了一种实现多种纳米结构的方法,例如基于原子层的量子线和超晶格,并提出了在电子学和光电子学领域的先进应用。我们通过扫描隧道显微镜和光谱学以及第一性原理计算研究了原子尖锐异质界面状态的局部电子密度。这些结果证明了一种实现多种纳米结构的方法,例如基于原子层的量子线和超晶格,并提出了在电子学和光电子学领域的先进应用。我们通过扫描隧道显微镜和光谱学以及第一性原理计算研究了原子尖锐异质界面状态的局部电子密度。这些结果证明了一种实现多种纳米结构的方法,例如基于原子层的量子线和超晶格,并提出了在电子学和光电子学领域的先进应用。
更新日期:2019-05-31
中文翻译:
基于层状硫属元素化物的二维异质结构的连续异质外延
原子薄层材料的平面内连接和逐层堆叠有望实现具有异乎寻常的物理特性的二维(2D)异质结构的制造和未来的工程应用。但是,当前有必要开发一种连续生长工艺,该工艺允许组装各种原子层而不会发生界面退化,污染和/或合金化。在这里,我们报告了基于层状过渡金属二卤化硅(TMDC)单层的二维多异质结构和纳米带的连续异质外延生长,采用了具有高供应可控性的金属有机液体前体。这种通用的过程可以避免在生长过程中暴露于空气中,并且可以形成具有超净原子尖锐和锯齿形边缘直结的平面内异质结构,而在界面周围不会形成缺陷或形成合金。对于直接在石墨上生长的样品,我们通过扫描隧道显微镜和光谱学以及第一性原理计算研究了原子锐异质界面态的局部电子密度。这些结果证明了一种实现多种纳米结构的方法,例如基于原子层的量子线和超晶格,并提出了在电子学和光电子学领域的先进应用。我们通过扫描隧道显微镜和光谱学以及第一性原理计算研究了原子尖锐异质界面状态的局部电子密度。这些结果证明了一种实现多种纳米结构的方法,例如基于原子层的量子线和超晶格,并提出了在电子学和光电子学领域的先进应用。我们通过扫描隧道显微镜和光谱学以及第一性原理计算研究了原子尖锐异质界面状态的局部电子密度。这些结果证明了一种实现多种纳米结构的方法,例如基于原子层的量子线和超晶格,并提出了在电子学和光电子学领域的先进应用。