当前位置:
X-MOL 学术
›
Energy Environ. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Towards an efficient liquid organic hydrogen carrier fuel cell concept†
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2019-05-24 00:00:00 , DOI: 10.1039/c9ee01324e Gabriel Sievi 1, 2, 3, 4 , Denise Geburtig 4, 5, 6, 7 , Tanja Skeledzic 1, 2, 3, 4 , Andreas Bösmann 4, 5, 6, 7 , Patrick Preuster 1, 2, 3, 4 , Olaf Brummel 4, 6, 7, 8 , Fabian Waidhas 4, 6, 7, 8 , María A. Montero 9, 10, 11, 12, 13 , Peyman Khanipour 1, 2, 3, 4 , Ioannis Katsounaros 1, 2, 3, 4 , Jörg Libuda 4, 6, 7, 8, 14 , Karl J. J. Mayrhofer 1, 2, 3, 4 , Peter Wasserscheid 1, 2, 3, 4, 5
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2019-05-24 00:00:00 , DOI: 10.1039/c9ee01324e Gabriel Sievi 1, 2, 3, 4 , Denise Geburtig 4, 5, 6, 7 , Tanja Skeledzic 1, 2, 3, 4 , Andreas Bösmann 4, 5, 6, 7 , Patrick Preuster 1, 2, 3, 4 , Olaf Brummel 4, 6, 7, 8 , Fabian Waidhas 4, 6, 7, 8 , María A. Montero 9, 10, 11, 12, 13 , Peyman Khanipour 1, 2, 3, 4 , Ioannis Katsounaros 1, 2, 3, 4 , Jörg Libuda 4, 6, 7, 8, 14 , Karl J. J. Mayrhofer 1, 2, 3, 4 , Peter Wasserscheid 1, 2, 3, 4, 5
Affiliation
The high temperature required for hydrogen release from Liquid Organic Hydrogen Carrier (LOHC) systems has been considered in the past as the main drawback of this otherwise highly attractive and fully infrastructure-compatible form of chemical hydrogen storage. According to the state-of-the art, the production of electrical energy from LOHC-bound hydrogen, e.g. from perhydro-dibenzyltoluene (H18-DBT), requires provision of the dehydrogenation enthalpy (e.g. 65 kJ mol−1 (H2) for H18-DBT) at a temperature level of 300 °C followed by purification of the released hydrogen for subsequent fuel cell operation. Here, we demonstrate that a combination of a heterogeneously catalysed transfer hydrogenation from H18-DBT to acetone and fuel cell operation with the resulting 2-propanol as a fuel, allows for an electrification of LOHC-bound hydrogen in high efficiency (>50%) and at surprisingly mild conditions (temperatures below 200 °C). Most importantly, our proposed new sequence does not require an external heat input as the transfer hydrogenation from H18-DBT to acetone is almost thermoneutral. In the PEMFC operation with 2-propanol, the endothermal proton release at the anode is compensated by the exothermic formation of water. Ideally the proposed sequence does not form and consume molecular H2 at any point which adds a very appealing safety feature to this way of producing electricity from LOHC-bound hydrogen, e.g. for applications on mobile platforms.
中文翻译:
迈向高效液态有机氢载燃料电池概念†
过去,从液态有机氢载体(LOHC)系统释放氢所需的高温已被视为这种原本非常有吸引力且与基础设施完全兼容的化学氢存储形式的主要缺点。根据现有技术,从LOHC结合的氢,例如从全氢二苄基甲苯(H18-DBT)产生电能,需要提供脱氢焓(例如65kJ mol -1(H 2)对于H18-DBT)在300°C的温度水平下进行,随后将释放出的氢净化,以用于随后的燃料电池操作。在这里,我们证明了从H18-DBT到丙酮的非均相催化转移加氢以及以生成的2-丙醇为燃料的燃料电池操作的结合,可以使LOHC结合的氢高效电化(> 50%)并且在令人惊讶的温和条件下(温度低于200°C)。最重要的是,我们提出的新序列不需要外部热量输入,因为从H18-DBT到丙酮的转移氢化几乎是热中性的。在使用2-丙醇的PEMFC操作中,阳极放出的吸热质子可通过放热水来补偿。理想情况下,建议的序列不形成并消耗分子H 2在任何时候都可以为这种以LOHC结合的氢生产电力的方式增加非常吸引人的安全性,例如用于移动平台上的应用。
更新日期:2019-05-24
中文翻译:
迈向高效液态有机氢载燃料电池概念†
过去,从液态有机氢载体(LOHC)系统释放氢所需的高温已被视为这种原本非常有吸引力且与基础设施完全兼容的化学氢存储形式的主要缺点。根据现有技术,从LOHC结合的氢,例如从全氢二苄基甲苯(H18-DBT)产生电能,需要提供脱氢焓(例如65kJ mol -1(H 2)对于H18-DBT)在300°C的温度水平下进行,随后将释放出的氢净化,以用于随后的燃料电池操作。在这里,我们证明了从H18-DBT到丙酮的非均相催化转移加氢以及以生成的2-丙醇为燃料的燃料电池操作的结合,可以使LOHC结合的氢高效电化(> 50%)并且在令人惊讶的温和条件下(温度低于200°C)。最重要的是,我们提出的新序列不需要外部热量输入,因为从H18-DBT到丙酮的转移氢化几乎是热中性的。在使用2-丙醇的PEMFC操作中,阳极放出的吸热质子可通过放热水来补偿。理想情况下,建议的序列不形成并消耗分子H 2在任何时候都可以为这种以LOHC结合的氢生产电力的方式增加非常吸引人的安全性,例如用于移动平台上的应用。