Advances in Colloid and Interface Science ( IF 15.9 ) Pub Date : 2019-05-22 , DOI: 10.1016/j.cis.2019.05.006 Rafiq Ahmad , Sanjit Manohar Majhi , Xixiang Zhang , Timothy M. Swager , Khaled N. Salama
Vertically oriented zinc oxide (ZnO) nanomaterials, such as nanorods (NRs), nanowires (NWs), nanotubes (NTs), nanoneedles (NNs), and nanosheets (NSs), are highly ordered architectures that provide remarkable properties for sensors. Furthermore, these nanostructures have fascinating features, including high surface-area-to-volume ratios, high charge carrier concentrations, and many surface-active sites. These features make vertically oriented ZnO nanomaterials exciting candidates for gas sensor fabrication. The development of efficient methods for the production of vertically oriented nanomaterial electrode surfaces has resulted in improved stability, high reproducibility, and gas sensing performance. Moving beyond conventional fabrication processes that include binders and nanomaterial deposition steps has been crucial, as the materials from these processes suffer from poor stability, low reproducibility, and marginal sensing performance. In this feature article, we comprehensively describe vertically oriented ZnO nanomaterials for gas sensing applications. The uses of such nanomaterials for gas sensor fabrication are discussed in the context of ease of growth, stability on an electrode surface, growth reproducibility, and enhancements in device efficiency as a result of their unique and advantageous features. In addition, we summarize applications of gas sensors for a variety of toxic and volatile organic compound (VOC) gases, and we discuss future directions of the vertically oriented ZnO nanomaterials.
中文翻译:
基于垂直取向ZnO纳米材料的气体传感器的最新进展和展望
垂直取向的氧化锌(ZnO)纳米材料,例如纳米棒(NRs),纳米线(NWs),纳米管(NTs),纳米针(NNs)和纳米片(NSs),是高度有序的体系结构,可为传感器提供出色的性能。此外,这些纳米结构具有令人着迷的特征,包括高的表面积与体积之比,高的载流子浓度和许多表面活性位。这些特性使垂直取向的ZnO纳米材料成为气体传感器制造的理想选择。用于生产垂直取向的纳米材料电极表面的有效方法的发展已导致改善的稳定性,高再现性和气体感测性能。超越包括粘合剂和纳米材料沉积步骤在内的常规制造工艺至关重要,由于这些工艺的材料稳定性差,重现性低,感应性能差。在这篇专题文章中,我们全面描述了用于气体传感应用的垂直取向ZnO纳米材料。由于它们的独特和有利的特征,在易于生长,电极表面上的稳定性,生长可再现性以及提高器件效率的背景下讨论了这种纳米材料在气体传感器制造中的用途。此外,我们总结了气体传感器在各种有毒和挥发性有机化合物(VOC)气体中的应用,并讨论了垂直取向的ZnO纳米材料的未来发展方向。我们全面描述了用于气体传感应用的垂直取向ZnO纳米材料。由于它们的独特和有利的特征,在易于生长,电极表面上的稳定性,生长可再现性以及提高器件效率的背景下讨论了这种纳米材料在气体传感器制造中的用途。此外,我们总结了气体传感器在各种有毒和挥发性有机化合物(VOC)气体中的应用,并讨论了垂直取向的ZnO纳米材料的未来发展方向。我们全面描述了用于气体传感应用的垂直取向ZnO纳米材料。由于它们的独特和有利的特征,在易于生长,电极表面上的稳定性,生长可再现性以及提高器件效率的背景下讨论了这种纳米材料在气体传感器制造中的用途。此外,我们总结了气体传感器在各种有毒和挥发性有机化合物(VOC)气体中的应用,并讨论了垂直取向的ZnO纳米材料的未来发展方向。以及由于其独特而有利的功能而提高了设备效率。此外,我们总结了气体传感器在各种有毒和挥发性有机化合物(VOC)气体中的应用,并讨论了垂直取向的ZnO纳米材料的未来发展方向。以及由于其独特而有利的功能而提高了设备效率。此外,我们总结了气体传感器在各种有毒和挥发性有机化合物(VOC)气体中的应用,并讨论了垂直取向的ZnO纳米材料的未来发展方向。