Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Uniform Na+ Doping‐Induced Defects in Li‐ and Mn‐Rich Cathodes for High‐Performance Lithium‐Ion Batteries
Advanced Science ( IF 14.3 ) Pub Date : 2019-05-17 , DOI: 10.1002/advs.201802114 Wei He 1 , Pengfei Liu 1 , Baihua Qu 1 , Zhiming Zheng 1 , Hongfei Zheng 1 , Pan Deng 1 , Pei Li 1 , Shengyang Li 1 , Hui Huang 1 , Laisen Wang 1 , Qingshui Xie 1 , Dong-Liang Peng 1
Advanced Science ( IF 14.3 ) Pub Date : 2019-05-17 , DOI: 10.1002/advs.201802114 Wei He 1 , Pengfei Liu 1 , Baihua Qu 1 , Zhiming Zheng 1 , Hongfei Zheng 1 , Pan Deng 1 , Pei Li 1 , Shengyang Li 1 , Hui Huang 1 , Laisen Wang 1 , Qingshui Xie 1 , Dong-Liang Peng 1
Affiliation
The corrosion of Li‐ and Mn‐rich (LMR) electrode materials occurring at the solid–liquid interface will lead to extra electrolyte consumption and transition metal ions dissolution, causing rapid voltage decay, capacity fading, and detrimental structure transformation. Herein, a novel strategy is introduced to suppress this corrosion by designing an Na+‐doped LMR (Li1.2Ni0.13Co0.13Mn0.54O2) with abundant stacking faults, using sodium dodecyl sulfate as surfactant to ensure the uniform distribution of Na+ in deep grain lattices—not just surface‐gathering or partially coated. The defective structure and deep distribution of Na+ are verified by Raman spectrum and high‐resolution transmission electron microscopy of the as‐prepared electrodes before and after 200 cycles. As a result, the modified LMR material shows a high reversible discharge specific capacity of 221.5 mAh g−1 at 0.5C rate (1C = 200 mA g−1) after 200 cycles, and the capacity retention is as high as 93.1% which is better than that of pristine‐LMR (64.8%). This design of Na+ is uniformly doped and the resultanting induced defective structure provides an effective strategy to enhance electrochemical performance which should be extended to prepare other advanced cathodes for high performance lithium‐ion batteries.
中文翻译:
高性能锂离子电池富锂和富锰正极中均匀 Na+ 掺杂引起的缺陷
富锂和富锰(LMR)电极材料在固液界面发生的腐蚀会导致额外的电解质消耗和过渡金属离子溶解,导致电压快速衰减、容量衰减和有害的结构转变。在此,引入了一种抑制这种腐蚀的新策略,通过设计具有丰富堆垛层错的Na +掺杂LMR(Li 1.2 Ni 0.13 Co 0.13 Mn 0.54 O 2 ),使用十二烷基硫酸钠作为表面活性剂来确保Na +的均匀分布。在深晶粒晶格中——不仅仅是表面聚集或部分涂覆。通过拉曼光谱和高分辨率透射电子显微镜对所制备的电极在200次循环前后的缺陷结构和Na +的深层分布进行了验证。结果表明,改性LMR材料在0.5C倍率(1C=200 mA g -1 )下循环200次后表现出221.5 mAh g -1的高可逆放电比容量,容量保持率高达93.1%优于原始 LMR (64.8%)。 Na +的这种设计是均匀掺杂的,由此产生的缺陷结构提供了一种增强电化学性能的有效策略,应该扩展到制备高性能锂离子电池的其他先进正极。
更新日期:2019-05-17
中文翻译:
高性能锂离子电池富锂和富锰正极中均匀 Na+ 掺杂引起的缺陷
富锂和富锰(LMR)电极材料在固液界面发生的腐蚀会导致额外的电解质消耗和过渡金属离子溶解,导致电压快速衰减、容量衰减和有害的结构转变。在此,引入了一种抑制这种腐蚀的新策略,通过设计具有丰富堆垛层错的Na +掺杂LMR(Li 1.2 Ni 0.13 Co 0.13 Mn 0.54 O 2 ),使用十二烷基硫酸钠作为表面活性剂来确保Na +的均匀分布。在深晶粒晶格中——不仅仅是表面聚集或部分涂覆。通过拉曼光谱和高分辨率透射电子显微镜对所制备的电极在200次循环前后的缺陷结构和Na +的深层分布进行了验证。结果表明,改性LMR材料在0.5C倍率(1C=200 mA g -1 )下循环200次后表现出221.5 mAh g -1的高可逆放电比容量,容量保持率高达93.1%优于原始 LMR (64.8%)。 Na +的这种设计是均匀掺杂的,由此产生的缺陷结构提供了一种增强电化学性能的有效策略,应该扩展到制备高性能锂离子电池的其他先进正极。