当前位置: X-MOL 学术Energy Storage Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Molybdenum trisulfide based anionic redox driven chemistry enabling high-performance all-solid-state lithium metal batteries
Energy Storage Materials ( IF 18.9 ) Pub Date : 2019-05-15 , DOI: 10.1016/j.ensm.2019.05.015
Qiang Zhang , Zhaoguang Ding , Gaozhan Liu , Hongli Wan , Jean Pierre Mwizerwa , Jinghua Wu , Xiayin Yao

Currently, all-solid-state lithium-sulfur batteries without polysulfide shuttle effect still can not realize high energy density batteries at room temperature due to the insulating nature and large volume change of sulfur. Herein, ultrafine amorphous molybdenum trisulfide (MoS3) nanoparticles uniformly anchored on the surface of two-dimension reduced graphene oxide (rGO) nanosheets are employed as alternative sulfur cathode for all-solid-state lithium metal batteries, which show comparable discharge plateau and capacity to sulfur-carbon composite electrodes. Compared with lithium ion batteries using organic liquid electrolyte, sulfide solid electrolyte based all-solid-state lithium metal batteries employing amorphous MoS3 undergo reversible anionic redox driven eletrochemical process instead of conversion reaction after initial discharge process. The Li/75%Li2S–24%P2S5–1%P2O5/Li10GeP2S12/rGO-MoS3 all-solid-state lithium metal batteries deliver high reversible capacity of 553.4 mAh g−1 at current density of 0.1 A g−1 after 100 cycles. Even after being cycled at 1.0 A g−1 for 500 cycles, it still shows the discharge specific capacity of 414.1 mAh g−1 with excellent cycling stability. The excellent rate capability and cycle performances could be attributed to the improved electronic conductivity and small volume changes as well as the elimination of soluble polysulfide shuttle. In addition, the electrochemical reaction kinetics and capacity contributions were analyzed via electrochemical impedance spectroscopy and cyclic voltammetry measurements.



中文翻译:

基于三硫化钼的阴离子氧化还原化学,可实现高性能的全固态锂金属电池

目前,由于硫的绝缘性和体积的大变化,没有多硫化物穿梭效应的全固态锂硫电池在室温下仍不能实现高能量密度的电池。在此,将均匀固定在二维还原氧化石墨烯(rGO)纳米片表面上的超细无定形三硫化钼(MoS 3)纳米颗粒用作全固态锂金属电池的替代硫阴极,它显示出相当的放电平台和容量硫碳复合电极。与使用有机液体电解质的锂离子电池相比,使用非晶态MoS 3的基于硫化物固体电解质的全固态锂金属电池在初始放电过程后,经历可逆的阴离子氧化还原驱动的电子化学过程,而不是转化反应。Li / 75%Li 2 S–24%P 2 S 5 –1%​​P 2 O 5 / Li 10 GeP 2 S 12 / rGO -MoS 3全固态锂金属电池可提供553.4 mAh g的高可逆容量-1在0.1 A克电流密度-1 100次循环后。即使在1.0 A g -1下循环500次后,放电比容量仍为414.1 mAh g -1具有出色的循环稳定性。优异的速率能力和循环性能可归因于改善的电子电导率和小的体积变化,以及消除了可溶性多硫化物梭。另外,通过电化学阻抗谱和循环伏安法测量分析了电化学反应动力学和容量贡献。

更新日期:2019-05-15
down
wechat
bug