当前位置: X-MOL 学术Sci. Rep. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Discrimination of the hierarchical structure of cortical layers in 2-photon microscopy data by combined unsupervised and supervised machine learning.
Scientific Reports ( IF 3.8 ) Pub Date : 2019-05-15 , DOI: 10.1038/s41598-019-43432-y
Dong Li 1 , Melissa Zavaglia 1, 2 , Guangyu Wang 3, 4 , Hong Xie 5 , Yi Hu 3, 4 , Rene Werner 1 , Ji-Song Guan 3, 4 , Claus C Hilgetag 1, 6
Affiliation  

The laminar organization of the cerebral cortex is a fundamental characteristic of the brain, with essential implications for cortical function. Due to the rapidly growing amount of high-resolution brain imaging data, a great demand arises for automated and flexible methods for discriminating the laminar texture of the cortex. Here, we propose a combined approach of unsupervised and supervised machine learning to discriminate the hierarchical cortical laminar organization in high-resolution 2-photon microscopic neural image data of mouse brain without observer bias, that is, without the prerequisite of manually labeled training data. For local cortical foci, we modify an unsupervised clustering approach to identify and represent the laminar cortical structure. Subsequently, supervised machine learning is applied to transfer the resulting layer labels across different locations and image data, to ensure the existence of a consistent layer label system. By using neurobiologically meaningful features, the discrimination results are shown to be consistent with the layer classification of the classical Brodmann scheme, and provide additional insight into the structure of the cerebral cortex and its hierarchical organization. Thus, our work paves a new way for studying the anatomical organization of the cerebral cortex, and potentially its functional organization.

中文翻译:

通过组合无监督和监督机器学习来区分2光子显微镜数据中的皮质层的层次结构。

大脑皮层的层状组织是大脑的基本特征,对皮层功能至关重要。由于高分辨率脑成像数据的数量迅速增长,因此对用于区分皮质的层状纹理的自动且灵活的方法提出了很高的要求。在这里,我们提出了一种无监督和有监督的机器学习相结合的方法,以在没有观察者偏见的情况下,即在没有手动标记训练数据的前提下,在小鼠脑的高分辨率2光子显微神经图像数据中区分分层皮质层状组织。对于局部皮质病灶,我们修改了一种无监督的聚类方法,以识别和表示层状皮质结构。随后,监督机器学习被应用来跨不同的位置和图像数据传输结果的层标签,以确保存在一致的层标签系统。通过使用神经生物学有意义的特征,判别结果显示与经典Brodmann方案的层分类一致,并提供了对大脑皮层结构及其分层组织的更多了解。因此,我们的工作为研究大脑皮层的解剖组织及其功能组织开辟了一条新途径。判别结果显示与经典Brodmann方案的层分类一致,并提供了对大脑皮层结构及其分层组织的更多了解。因此,我们的工作为研究大脑皮层的解剖组织及其功能组织开辟了一条新途径。判别结果显示与经典Brodmann方案的层分类一致,并提供了对大脑皮层结构及其分层组织的更多了解。因此,我们的工作为研究大脑皮层的解剖组织及其功能组织开辟了一条新途径。
更新日期:2019-05-16
down
wechat
bug