当前位置: X-MOL 学术Nano Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Synergy of micro-/mesoscopic interfaces in multilayered polymer nanocomposites induces ultrahigh energy density for capacitive energy storage
Nano Energy ( IF 16.8 ) Pub Date : 2019-05-15 , DOI: 10.1016/j.nanoen.2019.05.038
Jianyong Jiang , Zhonghui Shen , Jianfeng Qian , Zhenkang Dan , Mengfan Guo , Yue He , Yuanhua Lin , Ce-Wen Nan , Longqing Chen , Yang Shen

High-energy-density dielectric materials are highly desirable for the miniaturization and integration of modern electronics and power modules for applications in electrical power, communication, medical and defense systems. However, the conventional polymer nanocomposites with nanofillers randomly dispersed exhibit a limited energy storage performance (e.g. discharged energy density <15 J/cm3 and efficiency <70%). Here, we demonstrate the multilayer structure as an effective route to polymer nanocomposites that concurrently have ultrahigh discharge energy density and high efficiency. Compared to the random-dispersed nanocomposites, the rationally designed multilayered polymer nanocomposites are capable of integrating the suppressed effects of dielectric/electrode and dielectric/dielectric interfaces on charge injection and migration to remarkably enhance the breakdown strength and are expected to deliver an unprecedentedly high energy density of ∼35.4 J/cm3 (an enhancement of ∼1100% over the bench-mark biaxially-oriented polypropylene). This work provides insight into the design and fabrication of polymer nanocomposite with high energy density and discharge efficiency for capacitive energy storage applications.



中文翻译:

多层聚合物纳米复合材料中微观/介观界面的协同作用可诱导超高能量密度,以用于电容式储能

对于在电力,通信,医疗和国防系统中应用的现代电子设备和功率模块的小型化和集成,非常需要高能量密度的介电材料。然而,具有随机分散的纳米填料的常规聚合物纳米复合材料表现出有限的能量存储性能(例如,放电能量密度<15 J / cm 3)效率<70%)。在这里,我们证明了多层结构是同时具有超高放电能量密度和高效率的聚合物纳米复合材料的有效途径。与无规分散的纳米复合材料相比,合理设计的多层聚合物纳米复合材料能够整合电介质/电极和电介质/电介质界面对电荷注入和迁移的抑制作用,从而显着提高击穿强度,并有望提供前所未有的高能量密度约35.4 J / cm 3(比基准双轴取向聚丙烯提高了约1100%)。这项工作为具有电容能量存储应用的高能量密度和高放电效率的聚合物纳米复合材料的设计和制造提供了见识。

更新日期:2019-05-15
down
wechat
bug