当前位置: X-MOL 学术Adv. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Magnetic field effects on excited states, charge transport, and electrical polarization in organic semiconductors in spin and orbital regimes
Advances in Physics ( IF 35.0 ) Pub Date : 2019-04-03 , DOI: 10.1080/00018732.2019.1590295
Hengxing Xu 1 , Miaosheng Wang 1 , Zhi-Gang Yu 2 , Kai Wang 3 , Bin Hu 1, 3
Affiliation  

Magnetic field can influence photoluminescence, electroluminescence, photocurrent, injection current, and dielectric constant in organic materials, organic–inorganic hybrids, and nanoparticles at room temperature by re-distributing spin populations, generating emerging phenomena including magneto-photoluminescence, magneto-electroluminescence, magneto-photocurrent, magneto-electrical current, and magneto-dielectrics. These so-called intrinsic magnetic field effects (MFEs) can be observed in linear and non-linear regimes under one-photon and two-photon excitations in both low- and high-orbital materials. On the other hand, spin injection can be realized to influence spin-dependent excited states and electrical conduction via organic/ferromagnetic hybrid interface, leading to extrinsic MFEs. In last decades, MFEs have been serving as a unique experimental tool to reveal spin-dependent processes in excited states, electrical transport, and polarization in light-emitting diodes, solar cells, memories, field-effect transistors, and lasing devices. Very recently, they provide critical understanding on the operating mechanisms in advanced organic optoelectronic materials such as thermally activated delayed fluorescence light-emitting materials, non-fullerene photovoltaic bulk-heterojunctions, and organic–inorganic hybrid perovskites. While MFEs were initially realized by operating spin states in organic semiconducting materials with delocalized π electrons under negligible orbital momentum, recent studies indicate that MFEs can also be achieved under strong orbital momentum and Rashba effect in light emission, photovoltaics, and dielectric polarization. The transition of MFEs from the spin regime to the orbital regime creates new opportunities to versatilely control light-emitting, photovoltaic, lasing, and dielectric properties by using long-range Coulomb and short-range spin–spin interactions between orbitals. This article reviews recent progress on MFEs with the focus on elucidating fundamental mechanisms to control optical, electrical, optoelectronic, and polarization behaviors via spin-dependent excited states, electrical transport, and dielectric polarization. In this article both representative experimental results and mainstream theoretical models are presented to understand MFEs in the spin and orbital regimes for organic materials, nanoparticles, and organic–inorganic hybrids under linear and non-linear excitation regimes with emphasis on underlying spin-dependent processes.

中文翻译:

磁场对自旋和轨道状态下有机半导体中激发态、电荷传输和电极化的影响

磁场可以通过重新分布自旋群在室温下影响有机材料、有机-无机杂化物和纳米粒子中的光致发光、电致发光、光电流、注入电流和介电常数,产生包括磁光致发光、磁电致发光、磁致发光在内的新兴现象。 -光电流、磁电流和磁电介质。这些所谓的本征磁场效应 (MFE) 可以在低轨道和高轨道材料的单光子和双光子激发下以线性和非线性状态观察到。另一方面,可以实现自旋注入以通过有机/铁磁混合界面影响自旋相关激发态和电传导,从而产生外在 MFE。在过去的几十年里,MFE 一直作为一种独特的实验工具来揭示发光二极管、太阳能电池、存储器、场效应晶体管和激光装置中激发态、电传输和极化的自旋相关过程。最近,他们提供了对先进有机光电材料(如热激活延迟荧光发光材料、非富勒烯光伏体异质结和有机-无机杂化钙钛矿)的运行机制的重要理解。虽然 MFE 最初是通过在具有可忽略轨道动量的离域 π 电子的有机半导体材料中操作自旋态来实现的,但最近的研究表明,MFE 也可以在强轨道动量和光发射、光伏和介电极化中的 Rashba 效应下实现。MFEs 从自旋状态到轨道状态的转变创造了新的机会,通过使用轨道之间的长程库仑和短程自旋-自旋相互作用来灵活地控制发光、光伏、激光和介电特性。本文回顾了 MFE 的最新进展,重点阐明了通过依赖自旋的激发态、电传输和介电极化来控制光、电、光电和极化行为的基本机制。在本文中,提出了具有代表性的实验结果和主流理论模型,以了解线性和非线性激发状态下有机材料、纳米粒子和有机-无机杂化物的自旋和轨道状态中的 MFE,重点是潜在的自旋相关过程。
更新日期:2019-04-03
down
wechat
bug