当前位置:
X-MOL 学术
›
Inorg. Chem.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Conductive Nanosized Magnéli-Phase Ti4O7 with a [email protected] Structure
Inorganic Chemistry ( IF 4.3 ) Pub Date : 2019-05-09 00:00:00 , DOI: 10.1021/acs.inorgchem.9b00707 Daisuke Takimoto 1 , Yosuke Toda 2 , Satoshi Tominaka 3 , Dai Mochizuki 1, 2 , Wataru Sugimoto 1, 2
Inorganic Chemistry ( IF 4.3 ) Pub Date : 2019-05-09 00:00:00 , DOI: 10.1021/acs.inorgchem.9b00707 Daisuke Takimoto 1 , Yosuke Toda 2 , Satoshi Tominaka 3 , Dai Mochizuki 1, 2 , Wataru Sugimoto 1, 2
Affiliation
Magnéli-phase Ti4O7, known for its high electrical conductivity and corrosion resistance, is typically prepared by hydrogen reduction at high temperatures (∼1000 °C), leading to large particles. Nanosized Ti4O7 have been explored for application toward high specific surface area electrode materials and electrocatalyst supports; nonetheless, the particle size of Ti4O7 is still insufficient for utilization as a support. In this study, we have pursued a novel synthetic approach for nanosized Ti4O7 platelets with a length of 10–80 nm and thickness of 3–10 nm even under high-temperature conditions. We herein describe the use of SiO2 beads as a core to obtain a SiO2 core coated with multilayers of TiO2 nanosheets exfoliated from layered H2Ti4O7 which is subsequently subjected to high-temperature reduction to prepare a SiO2[email protected]4O7-shell structure. The pair distribution function technique has proven that the shell is transformed to single-phase Ti4O7. The electrical double layer capacitance of SiO2[email protected]4O7-shell was much larger than that of conventionally synthesized Ti4O7 particles with a micrometer size. The results show the beneficial effects of the SiO2[email protected]4O7-shell structure, and it is the first example of the synthesis for conductive Ti4O7 with a high specific surface area even under conditions of high-temperature synthesis.
中文翻译:
具有[受电子邮件保护的]结构的导电纳米Magnéli-PhaseTi 4 O 7纳米
镁相Ti 4 O 7以高电导率和耐腐蚀性而著称,通常是通过在高温(〜1000°C)下将氢还原而制得的,从而产生大颗粒。已经研究了纳米尺寸的Ti 4 O 7,以用于高比表面积的电极材料和电催化剂载体。但是,Ti 4 O 7的粒径仍不足以用作载体。在这项研究中,我们追求了一种新颖的合成方法,即使在高温条件下,Ti 4 O 7纳米片的长度也为10-80 nm,厚度为3-10 nm。我们在此描述了SiO的使用以2个珠子为芯,获得SiO 2芯,该SiO 2芯包覆有层状H 2 Ti 4 O 7剥落的TiO 2纳米片多层,随后对其进行高温还原以制备SiO 2 [受电子邮件保护] 4 O 7-壳结构体。对分布函数技术已证明壳已转变为单相Ti 4 O 7。SiO 2 [受电子邮件保护] 4 O 7壳的双电层电容比常规合成的Ti 4大得多O 7微米尺寸的颗粒。结果表明,SiO 2 [受电子邮件保护的] 4 O 7壳结构的有益效果,它是即使在高温合成条件下也可以合成具有高比表面积的导电Ti 4 O 7的第一个实例。
更新日期:2019-05-09
中文翻译:
具有[受电子邮件保护的]结构的导电纳米Magnéli-PhaseTi 4 O 7纳米
镁相Ti 4 O 7以高电导率和耐腐蚀性而著称,通常是通过在高温(〜1000°C)下将氢还原而制得的,从而产生大颗粒。已经研究了纳米尺寸的Ti 4 O 7,以用于高比表面积的电极材料和电催化剂载体。但是,Ti 4 O 7的粒径仍不足以用作载体。在这项研究中,我们追求了一种新颖的合成方法,即使在高温条件下,Ti 4 O 7纳米片的长度也为10-80 nm,厚度为3-10 nm。我们在此描述了SiO的使用以2个珠子为芯,获得SiO 2芯,该SiO 2芯包覆有层状H 2 Ti 4 O 7剥落的TiO 2纳米片多层,随后对其进行高温还原以制备SiO 2 [受电子邮件保护] 4 O 7-壳结构体。对分布函数技术已证明壳已转变为单相Ti 4 O 7。SiO 2 [受电子邮件保护] 4 O 7壳的双电层电容比常规合成的Ti 4大得多O 7微米尺寸的颗粒。结果表明,SiO 2 [受电子邮件保护的] 4 O 7壳结构的有益效果,它是即使在高温合成条件下也可以合成具有高比表面积的导电Ti 4 O 7的第一个实例。