当前位置: X-MOL 学术Microchim. Acta › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Perylene-functionalized graphene sheets modified with chitosan for voltammetric discrimination of tryptophan enantiomers
Microchimica Acta ( IF 5.3 ) Pub Date : 2019-05-07 , DOI: 10.1007/s00604-019-3442-5
Xing Yang , Xiaohui Niu , Zunli Mo , Ruibin Guo , Nijuan Liu , Pan Zhao , Zhenyu Liu

AbstractA composite was prepared from graphene functionalized with 3,4,9,10-perylene tetracarboxylic acid and chitosan (rGO-PTCA-chitosan) by a chemical method. It involves non-covalent functionalization of rGO with PTCA followed by amidation reaction with chitosan. Scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and electrochemical methods were used to characterize the composites. By combining the chiral features of chitosan and the excellent electrochemical behaviors of rGO-PTCA, a graphene-based material with enantioselectivity was constructed for electrochemical chiral recognition of tryptophan (Trp) enantiomers. A glassy carbon electrode (GCE) modified with rGO-PTCA-chitosan had a higher recognition capability for L-Trp than for D-Trp. Best operated at a working voltage near 0.78 V (vs. SCE), the enantioselectivity coefficient is 3.0. The sensor has a linear response in the 1 mM to 10 mM Trp concentration range and a 1.2 μM detection limit (at S/N = 3) for L-Trp, and of 3.0 μM to D-Trp. The sensor was successfully used to detect Trp enantiomers in real samples, and a recognition mechanism is presented. Graphical abstractSchematic presentation of a composoie prepared by graphene functionalized with 3,4,9,10-perylene tetracarboxylic acid and chitosan (rGO-PTCA-chitosan) via a chemical method. It involves non-covalent functionalization of rGO with PTCA followed by amidation reaction with chitosan and voltammetric determination of tryptophan enantiomers.

中文翻译:

用壳聚糖修饰的苝功能化石墨烯片用于色氨酸对映体的伏安鉴别

摘要 以 3,4,9,10-苝四甲酸和壳聚糖(rGO-PTCA-壳聚糖)功能化的石墨烯为原料,采用化学方法制备了复合材料。它涉及 rGO 与 PTCA 的非共价功能化,然后与壳聚糖的酰胺化反应。使用扫描电子显微镜、傅里叶变换红外光谱、X 射线光电子能谱和电化学方法对复合材料进行表征。通过结合壳聚糖的手性特征和 rGO-PTCA 的优异电化学行为,构建了一种具有对映选择性的石墨烯基材料,用于色氨酸 (Trp) 对映体的电化学手性识别。用 rGO-PTCA-壳聚糖修饰的玻碳电极 (GCE) 对 L-Trp 的识别能力高于对 D-Trp 的识别能力。最好在接近 0.78 V 的工作电压下运行(vs. SCE),对映选择性系数为 3.0。该传感器在 1 mM 至 10 mM Trp 浓度范围内具有线性响应,L-Trp 检测限为 1.2 μM(S/N = 3),D-Trp 检测限为 3.0 μM。该传感器已成功用于检测实际样品中的色氨酸对映体,并提出了一种识别机制。图形摘要通过化学方法用 3,4,9,10-苝四羧酸和壳聚糖(rGO-PTCA-壳聚糖)功能化的石墨烯制备的复合材料的示意图。它涉及 rGO 与 PTCA 的非共价官能化,然后与壳聚糖的酰胺化反应和色氨酸对映异构体的伏安法测定。和 3.0 μM 到 D-Trp。该传感器已成功用于检测实际样品中的色氨酸对映异构体,并提出了一种识别机制。图形摘要通过化学方法用 3,4,9,10-苝四羧酸和壳聚糖(rGO-PTCA-壳聚糖)功能化的石墨烯制备的复合材料的示意图。它涉及 rGO 与 PTCA 的非共价官能化,然后与壳聚糖的酰胺化反应和色氨酸对映异构体的伏安法测定。和 3.0 μM 到 D-Trp。该传感器已成功用于检测实际样品中的色氨酸对映异构体,并提出了一种识别机制。图形摘要通过化学方法用 3,4,9,10-苝四羧酸和壳聚糖(rGO-PTCA-壳聚糖)功能化的石墨烯制备的复合材料的示意图。它涉及 rGO 与 PTCA 的非共价官能化,然后与壳聚糖的酰胺化反应和色氨酸对映异构体的伏安法测定。
更新日期:2019-05-07
down
wechat
bug